A229870
T(n,k)=Number of n X n 0..k arrays with corresponding row and column sums equal.
Original entry on oeis.org
2, 3, 8, 4, 27, 80, 5, 64, 1215, 2432, 6, 125, 8704, 384183, 247552, 7, 216, 40625, 15106048, 923742873, 88060928, 8, 343, 143856, 266515625, 354003288064, 17451302074317, 112371410944, 9, 512, 420175, 2805425280, 36821326171875
Offset: 1
Some solutions for n=4 k=4
..0..0..0..1....0..0..0..1....0..0..0..0....0..0..1..1....0..0..1..1
..0..1..2..1....0..0..3..4....0..0..3..3....0..1..0..3....0..0..2..2
..1..0..0..3....1..4..2..0....0..4..0..2....1..3..4..0....1..3..4..1
..0..3..2..1....0..3..2..2....0..2..3..2....1..0..3..2....1..1..2..0
A059977
a(n) = binomial(n+2, 2)^4.
Original entry on oeis.org
1, 81, 1296, 10000, 50625, 194481, 614656, 1679616, 4100625, 9150625, 18974736, 37015056, 68574961, 121550625, 207360000, 342102016, 547981281, 855036081, 1303210000, 1944810000, 2847396321, 4097152081, 5802782976, 8100000000, 11156640625, 15178486401
Offset: 0
1 = (1 + 1)/2, 81 = (33 + 129)/2, 1296 = (276 + 2316)/2, 10000 = (1300 + 18700)/2, ... - _Philippe Deléham_, May 25 2015
- Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, 2001, p. 325.
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
with (combinat):seq(mul(stirling2(n+1,n),k=1..4),n=1..24); # Zerinvary Lajos, Dec 16 2007
-
m = 4; Table[ ( (n^m)(n + 1)^m )/(2^m), {n, 1, 30} ]
-
a(n) = { ((n + 1)*(n + 2)/2)^4 } \\ Harry J. Smith, Jun 30 2009
-
[stirling_number2(n+1,n)^4for n in range(1,25)] # Zerinvary Lajos, Mar 14 2009
A168351
a(n) = n^5*(n+1)/2.
Original entry on oeis.org
0, 1, 48, 486, 2560, 9375, 27216, 67228, 147456, 295245, 550000, 966306, 1617408, 2599051, 4033680, 6075000, 8912896, 12778713, 17950896, 24760990, 33600000, 44925111, 59266768, 77236116, 99532800, 126953125, 160398576, 200884698
Offset: 0
Sequences of the form n^5*(n^k + 1)/2:
A000584 (k=0), this sequence (k=1),
A168364 (k=2),
A168371 (k=3),
A168372 (k=4),
A071236 (k=5),
A168412 (k=6),
A168432 (k=7),
A168462 (k=8),
A168471 (k=9),
A168507 (k=10).
A357178
First differences of cubes of triangular numbers.
Original entry on oeis.org
0, 1, 26, 189, 784, 2375, 5886, 12691, 24704, 44469, 75250, 121121, 187056, 279019, 404054, 570375, 787456, 1066121, 1418634, 1858789, 2402000, 3065391, 3867886, 4830299, 5975424, 7328125, 8915426, 10766601, 12913264, 15389459, 18231750, 21479311, 25174016, 29360529
Offset: 0
Cf.
A059827 (cubes of triangular numbers).
Cf.
A000578 (for squares) and
A168364 (for fourth powers) of triangular numbers.
Showing 1-4 of 4 results.
Comments