cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A229870 T(n,k)=Number of n X n 0..k arrays with corresponding row and column sums equal.

Original entry on oeis.org

2, 3, 8, 4, 27, 80, 5, 64, 1215, 2432, 6, 125, 8704, 384183, 247552, 7, 216, 40625, 15106048, 923742873, 88060928, 8, 343, 143856, 266515625, 354003288064, 17451302074317, 112371410944, 9, 512, 420175, 2805425280, 36821326171875
Offset: 1

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Table starts
......2.........3............4..............5................6...........7
......8........27...........64............125..............216.........343
.....80......1215.........8704..........40625...........143856......420175
...2432....384183.....15106048......266515625.......2805425280.20610104767
.247552.923742873.354003288064.36821326171875.1656812779036416

Examples

			Some solutions for n=4 k=4
..0..0..0..1....0..0..0..1....0..0..0..0....0..0..1..1....0..0..1..1
..0..1..2..1....0..0..3..4....0..0..3..3....0..1..0..3....0..0..2..2
..1..0..0..3....1..4..2..0....0..4..0..2....1..3..4..0....1..3..4..1
..0..3..2..1....0..3..2..2....0..2..3..2....1..0..3..2....1..1..2..0
		

Crossrefs

Row 2 is A000578(n+1)
Row 3 is A168364(n+1)

Formula

Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^3 + 3*n^2 + 3*n + 1
n=3: [polynomial of degree 7]
n=4: [polynomial of degree 13]

A059977 a(n) = binomial(n+2, 2)^4.

Original entry on oeis.org

1, 81, 1296, 10000, 50625, 194481, 614656, 1679616, 4100625, 9150625, 18974736, 37015056, 68574961, 121550625, 207360000, 342102016, 547981281, 855036081, 1303210000, 1944810000, 2847396321, 4097152081, 5802782976, 8100000000, 11156640625, 15178486401
Offset: 0

Views

Author

Robert G. Wilson v, Mar 06 2001

Keywords

Comments

Number of 4-dimensional cage assemblies.
See Chap. 61, "Hyperspace Prisons", of C. Pickover's book "Wonders of Numbers" for full explanation of "cage numbers."

Examples

			1 = (1 + 1)/2, 81 = (33 + 129)/2, 1296 = (276 + 2316)/2, 10000 = (1300 + 18700)/2, ... - _Philippe Deléham_, May 25 2015
		

References

  • Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, 2001, p. 325.

Crossrefs

Cf. A168364 (first differences).

Programs

  • Maple
    with (combinat):seq(mul(stirling2(n+1,n),k=1..4),n=1..24); # Zerinvary Lajos, Dec 16 2007
  • Mathematica
    m = 4; Table[ ( (n^m)(n + 1)^m )/(2^m), {n, 1, 30} ]
  • PARI
    a(n) = { ((n + 1)*(n + 2)/2)^4 } \\ Harry J. Smith, Jun 30 2009
  • Sage
    [stirling_number2(n+1,n)^4for n in range(1,25)] # Zerinvary Lajos, Mar 14 2009
    

Formula

L(n) = ((n^m)(n + 1)^m)/(2^m) where m is the dimension, which in this case is 4.
O.g.f.: -(1+72*x+603*x^2+1168*x^3+603*x^4+72*x^5+x^6)/(-1+x)^9. - R. J. Mathar, Mar 31 2008
a(n) = A000217(n+1)^4. - R. J. Mathar, Dec 13 2011
a(n) = (A000539(n+1) + A000541(n+1))/2. - Philippe Deléham, May 25 2015
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=0} 1/a(n) = 160*Pi^2/3 + 16*Pi^4/45 - 560.
Sum_{n>=0} (-1)^n/a(n) = 560 - 640*log(2) - 96*zeta(3). (End)

Extensions

Better definition from Zerinvary Lajos, May 23 2006

A168351 a(n) = n^5*(n+1)/2.

Original entry on oeis.org

0, 1, 48, 486, 2560, 9375, 27216, 67228, 147456, 295245, 550000, 966306, 1617408, 2599051, 4033680, 6075000, 8912896, 12778713, 17950896, 24760990, 33600000, 44925111, 59266768, 77236116, 99532800, 126953125, 160398576, 200884698
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^5*(n^k + 1)/2: A000584 (k=0), this sequence (k=1), A168364 (k=2), A168371 (k=3), A168372 (k=4), A071236 (k=5), A168412 (k=6), A168432 (k=7), A168462 (k=8), A168471 (k=9), A168507 (k=10).

Programs

Formula

a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} Sum_{l=1..n} Sum_{m=1..n} (i+j+k-l-m). - Wesley Ivan Hurt, Aug 13 2015
From G. C. Greubel, Mar 20 2025: (Start)
G.f.: x*(1 + 41*x + 171*x^2 + 131*x^3 + 16*x^4)/(1-x)^7.
E.g.f.: (1/2)*x*(2 + 46*x + 115*x^2 + 75*x^3 + 16*x^4 + x^5)*exp(x). (End)

A357178 First differences of cubes of triangular numbers.

Original entry on oeis.org

0, 1, 26, 189, 784, 2375, 5886, 12691, 24704, 44469, 75250, 121121, 187056, 279019, 404054, 570375, 787456, 1066121, 1418634, 1858789, 2402000, 3065391, 3867886, 4830299, 5975424, 7328125, 8915426, 10766601, 12913264, 15389459, 18231750, 21479311, 25174016, 29360529
Offset: 0

Views

Author

Kelvin Voskuijl, Sep 16 2022

Keywords

Comments

Row sums of centered hexagonal numbers A003215 treated as a regular triangle.

Crossrefs

Cf. A059827 (cubes of triangular numbers).
Cf. A000578 (for squares) and A168364 (for fourth powers) of triangular numbers.
Cf. A000217 (triangular numbers), A003215.

Programs

Formula

a(n) = (n^3 + 3*n^5)/4.
G.f.: x*(1 + 20*x + 48*x^2 + 20*x^3 + x^4)/(1 - x)^6. - Stefano Spezia, Sep 19 2022
Showing 1-4 of 4 results.