A168668 a(n) = n*(2 + 5*n).
0, 7, 24, 51, 88, 135, 192, 259, 336, 423, 520, 627, 744, 871, 1008, 1155, 1312, 1479, 1656, 1843, 2040, 2247, 2464, 2691, 2928, 3175, 3432, 3699, 3976, 4263, 4560, 4867, 5184, 5511, 5848, 6195, 6552, 6919, 7296, 7683, 8080, 8487, 8904, 9331, 9768, 10215, 10672
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature(3,-3,1).
Crossrefs
Programs
-
Magma
[n*(2+5*n): n in [0..50] ]; // Vincenzo Librandi, Aug 06 2011
-
Maple
A168668:=n->n*(2+5*n): seq(A168668(n), n=0..50); # Wesley Ivan Hurt, Mar 28 2015
-
Mathematica
f[n_]:=n*(2+5*n);f[Range[0,60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011*) LinearRecurrence[{3,-3,1},{0,7,24},50] (* Harvey P. Dale, Sep 09 2021 *)
-
PARI
vector(50,n,n--;n*(2+5*n)) \\ Derek Orr, Jun 26 2015
Formula
G.f.: x*(7 + 3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
First differences: a(n) - a(n-1) = 10*n-3.
Second differences: a(n) - 2*a(n-1) + a(n-2) = 10 = A010692(n).
a(n) = A131242(10n+6). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(7 + 5*x)*exp(x). - G. C. Greubel, Jul 29 2016
Sum_{n>=1} 1/a(n) = 5/4 - sqrt(1-2/sqrt(5))*Pi/4 + sqrt(5)*log(phi)/4 - 5*log(5)/8, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 17 2023
Extensions
Edited and extended by R. J. Mathar, Dec 05 2009
Comments