cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A131242 Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0

Views

Author

Hieronymus Fischer, Jun 21 2007

Keywords

Comments

Complementary with A130488 regarding triangular numbers, in that A130488(n)+10*a(n)=n(n+1)/2=A000217(n).

Examples

			As square array :
    0,   0,   0,   0,   0,   0,   0,   0,   0,    0
    1,   2,   3,   4,   5,   6,   7,   8,   9,   10
   12,  14,  16,  18,  20,  22,  24,  26,  28,   30
   33,  36,  39,  42,  45,  48,  51,  54,  57,   60
   64,  68,  72,  76,  80,  84,  88,  92,  96,  100
  105, 110, 115, 120, 125, 130, 135, 140, 145,  150
  156, 162, 168, 174, 180, 186, 192, 198, 204,  210
... - _Philippe Deléham_, Mar 27 2013
		

Crossrefs

Programs

  • Mathematica
    Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
    Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
  • PARI
    for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
    
  • PARI
    a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016

Formula

a(n) = (1/2)*floor(n/10)*(2n-8-10*floor(n/10)).
a(n) = A059995(n)*(2n-8-10*A059995(n))/2.
a(n) = (1/2)*A059995(n)*(n-8+A010879(n)).
a(n) = (n-A010879(n))*(n+A010879(n)-8)/20.
G.f.: x^10/((1-x^10)(1-x)^2).
From Philippe Deléham, Mar 27 2013: (Start)
a(10n) = A051624(n).
a(10n+1) = A135706(n).
a(10n+2) = A147874(n+1).
a(10n+3) = 2*A005476(n).
a(10n+4) = A033429(n).
a(10n+5) = A202803(n).
a(10n+6) = A168668(n).
a(10n+7) = 2*A147875(n).
a(10n+8) = A135705(n).
a(10n+9) = A124080(n). (End)
a(n) = A008728(n-10) for n>= 10. - Georg Fischer, Nov 03 2018

A254963 a(n) = n*(11*n + 3)/2.

Original entry on oeis.org

0, 7, 25, 54, 94, 145, 207, 280, 364, 459, 565, 682, 810, 949, 1099, 1260, 1432, 1615, 1809, 2014, 2230, 2457, 2695, 2944, 3204, 3475, 3757, 4050, 4354, 4669, 4995, 5332, 5680, 6039, 6409, 6790, 7182, 7585, 7999, 8424, 8860, 9307, 9765, 10234, 10714, 11205, 11707
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2015

Keywords

Comments

This sequence provides the first differences of A254407 and the partial sums of A017473.
Also:
a(n) - n = A022269(n);
a(n) + n = n*(11*n+5)/2: 0, 8, 27, 57, 98, 150, 213, 287, ...;
a(n) - 2*n = A022268(n);
a(n) + 2*n = n*(11*n+7)/2: 0, 9, 29, 60, 102, 155, 219, 294, ...;
a(n) - 3*n = n*(11*n-3)/2: 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) + 3*n = A211013(n);
a(n) - 4*n = A226492(n);
a(n) + 4*n = A152740(n);
a(n) - 5*n = A180223(n);
a(n) + 5*n = n*(11*n+13)/2: 0, 12, 35, 69, 114, 170, 237, 315, ...;
a(n) - 6*n = A051865(n);
a(n) + 6*n = n*(11*n+15)/2: 0, 13, 37, 72, 118, 175, 243, 322, ...;
a(n) - 7*n = A152740(n-1) with A152740(-1) = 0;
a(n) + 7*n = n*(11*n+17)/2: 0, 14, 39, 75, 122, 180, 249, 329, ...;
a(n) - n*(n-1)/2 = A168668(n);
a(n) + n*(n-1)/2 = A049453(n);
a(n) - n*(n+1)/2 = A202803(n);
a(n) + n*(n+1)/2 = A033580(n).

Crossrefs

Cf. A008729 and A218530 (seventh column); A017473, A254407.
Cf. similar sequences of the type 4*n^2 + k*n*(n+1)/2: A055999 (k=-7, n>6), A028552 (k=-6, n>2), A095794 (k=-5, n>1), A046092 (k=-4, n>0), A000566 (k=-3), A049450 (k=-2), A022264 (k=-1), A016742 (k=0), A022267 (k=1), A202803 (k=2), this sequence (k=3), A033580 (k=4).
Cf. A069125: (2*n+1)^2 + 3*n*(n+1)/2; A147875: n^2 + 3*n*(n+1)/2.

Programs

  • Magma
    [n*(11*n+3)/2: n in [0..50]];
    
  • Mathematica
    Table[n (11 n + 3)/2, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{0,7,25},50] (* Harvey P. Dale, Mar 25 2018 *)
  • Maxima
    makelist(n*(11*n+3)/2, n, 0, 50);
  • PARI
    vector(50, n, n--; n*(11*n+3)/2)
    
  • Sage
    [n*(11*n+3)/2 for n in (0..50)]
    

Formula

G.f.: x*(7 + 4*x)/(1 - x)^3.
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: exp(x)*x*(14 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A202803 a(n) = n*(5*n+1).

Original entry on oeis.org

0, 6, 22, 48, 84, 130, 186, 252, 328, 414, 510, 616, 732, 858, 994, 1140, 1296, 1462, 1638, 1824, 2020, 2226, 2442, 2668, 2904, 3150, 3406, 3672, 3948, 4234, 4530, 4836, 5152, 5478, 5814, 6160, 6516, 6882, 7258, 7644, 8040, 8446, 8862, 9288, 9724, 10170
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

First bisection of A219190. - Bruno Berselli, Nov 15 2012
a(n)*Pi is the total length of 5 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A017341. The spiral length ratio rounded down [floor(L(n)/L(1))] is A032793. See illustration in links. - Kival Ngaokrajang, Dec 27 2013

Examples

			G.f. = 6*x + 22*x^2 + 48*x^3 + 84*x^4 + 130*x^5 +186*x^6 + 252*x^7 + 328*x^8 + ...
		

Crossrefs

Cf. sequences listed in A254963.

Programs

Formula

a(n) = 5*n^2 + n.
a(n) = A033429(n) + n. - Omar E. Pol, Dec 24 2011
G.f.: 2*x*(3+2*x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 6, a(2) = 22. - Philippe Deléham, Mar 27 2013
a(n) = A131242(10n+5). - Philippe Deléham, Mar 27 2013
a(n) = 2*A005475(n). - Philippe Deléham, Mar 27 2013
a(n) = A168668(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = (n+1)^3 - (1 + n + n*(n-1) + n*(n-1)*(n-2)). - Michael Somos, Aug 10 2014
E.g.f.: x*(6+5*x)*exp(x). - G. C. Greubel, Aug 22 2017
Sum_{n>=1} 1/a(n) = 5*(1-log(5)/4) - sqrt(1+2/sqrt(5))*Pi/2 -sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). - Amiram Eldar, Jul 19 2022

A002789 Number of integer points in a certain quadrilateral scaled by a factor of n.

Original entry on oeis.org

2, 4, 7, 11, 16, 21, 28, 35, 43, 52, 62, 72, 84, 96, 109, 123, 138, 153, 170, 187, 205, 224, 244, 264, 286, 308, 331, 355, 380, 405, 432, 459, 487, 516, 546, 576, 608, 640, 673, 707, 742, 777, 814, 851, 889, 928, 968, 1008, 1050, 1092, 1135, 1179, 1224, 1269
Offset: 1

Views

Author

Keywords

Comments

The quadrilateral is given by four vertices [(1/2, 1/3), (0, 1), (0, 0), (1, 0)] as an example on page 22 of Ehrhart 1967. Here the closed line segment from (1/2, 1/3) to (0, 1) is not included but the rest of the boundary is. The sequence is denoted by d(n). - Michael Somos, May 22 2014

Examples

			G.f. = 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 16*x^5 + 21*x^6 + 28*x^7 + 35*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[ n_] := Quotient[ 7 + 12 n + 5 n^2, 12]; (* Michael Somos, May 22 2014 *)
    a[ n_] := Length @ With[{o = Boole[ 0 < n], c = Boole[ 0 >= n], m = Abs@n}, FindInstance[ 0 < o + x && 0 < o + y && (2 x < o + m && 4 x + 3 y < c + 3 m || m < c + 2 x && 2 x + 3 y < o + 2 m), {x, y}, Integers, 10^9]]; (* Michael Somos, May 22 2014 *)
  • PARI
    {a(n) = (7 + 12*n + 5*n^2) \ 12}; /* Michael Somos, May 22 2014 */
    
  • PARI
    {a(n) = if( n<0, polcoeff( x^3 * (1 + x + x^2 + 2*x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^-n), -n), polcoeff( x * (2 + x^2 + x^3 + x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^n), n))}; /* Michael Somos, May 22 2014 */

Formula

G.f.: x * (2 + 2*x + x^2) / (1 - x - x^2 + x^4 + x^5 - x^6) = (2*x + x^3 + x^4 + x^5) / ((1 - x)^2 * (1 - x^6)). - Michael Somos, May 22 2014
a(n) = floor( A168668(n+1) / 12), a(n) = A242771(-n), a(n) - a(n-1) = A242774(n) for all n in Z. - Michael Somos, May 22 2014

A249547 a(n) = (10*n^2+8*n-1+(-1)^n)/8.

Original entry on oeis.org

0, 2, 7, 14, 24, 36, 51, 68, 88, 110, 135, 162, 192, 224, 259, 296, 336, 378, 423, 470, 520, 572, 627, 684, 744, 806, 871, 938, 1008, 1080, 1155, 1232, 1312, 1394, 1479, 1566, 1656, 1748, 1843, 1940, 2040, 2142, 2247, 2354, 2464, 2576, 2691, 2808, 2928, 3050
Offset: 0

Views

Author

Wesley Ivan Hurt, Oct 31 2014

Keywords

Comments

a(n) is the number of lattice points (x,y) in the coordinate plane bounded by y < 3x, y >= x/2 and x <= n.
a(n)+1 is the number of lattice points bounded by y <= 3x, y >= x/2 and x <= n.

Crossrefs

Programs

  • Magma
    [(10*n^2+8*n-1+(-1)^n)/8 : n in [0..50]];
    
  • Maple
    A249547:=n->(10*n^2+8*n-1+(-1)^n)/8: seq(A249547(n), n=0..100);
  • Mathematica
    Table[(10*n^2 + 8 n - 1 + (-1)^n)/8 , {n, 0, 50}]
  • PARI
    a(n) = (10*n^2+8*n-1+(-1)^n)/8; \\ Michel Marcus, Nov 04 2014
    
  • PARI
    concat(0, Vec(x*(2+3*x)/((1-x)^3*(1+x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015

Formula

G.f.: x*(2+3*x)/((1-x)^3*(1+x)).
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3.
a(n) = A004526(n) + A226292(n), for n>0.
a(n) = Sum_{i=0..n} A001068(2*i). - Wesley Ivan Hurt, May 06 2016
E.g.f.: (x*(9 + 5*x)*exp(x) - sinh(x))/4. - Ilya Gutkovskiy, May 06 2016
a(2n) = A168668(n). a(2n-1) = A135706(n). - Wesley Ivan Hurt, May 09 2016

A272039 a(n) = 10*n^2 + 4*n + 1.

Original entry on oeis.org

1, 15, 49, 103, 177, 271, 385, 519, 673, 847, 1041, 1255, 1489, 1743, 2017, 2311, 2625, 2959, 3313, 3687, 4081, 4495, 4929, 5383, 5857, 6351, 6865, 7399, 7953, 8527, 9121, 9735, 10369, 11023, 11697, 12391, 13105, 13839, 14593, 15367, 16161, 16975, 17809, 18663, 19537
Offset: 0

Views

Author

Vincenzo Librandi, Apr 20 2016

Keywords

Comments

Polynomials from the table "Coefficients and roots of Ehrhart polynomials" in Beck et al. paper (see Links section):
. Cube: A000578;
. Cube minus corner: A004068;
. Prism: A002411;
. Octahedron: A005900;
. Square pyramid: A000330;
. Bypyramid: A006003;
. Unimodular tetrahedron: A000292;
. Fat tetrahedron: A167875;
. Cyclic(2,5), which has the same polynomial form of this sequence.
a(n) for n = 0, -1, 1, -2, 2, -3, 3, ... gives all x such that (5*x - 3)/2 is a square.
Squares in sequence: 1, 49, 1385329, 101263969, 2880599856289, ...
Is this 1 followed by A228219?

Crossrefs

Programs

  • Magma
    [10*n^2+4*n+1: n in [0..50]];
    
  • Mathematica
    Table[10 n^2 + 4 n + 1, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{1,15,49},50] (* Harvey P. Dale, Dec 26 2021 *)
  • PARI
    a(n)=10*n^2+4*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

O.g.f.: (1 + 12*x + 7*x^2)/(1 - x)^3.
E.g.f.: (1 + 14*x + 10*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A168668(n) + 1.

Extensions

Edited by Bruno Berselli, Apr 22 2016

A085047 a(n) is the least number not already used such that the arithmetic mean of the first n terms is a square.

Original entry on oeis.org

1, 7, 4, 24, 9, 51, 16, 88, 25, 135, 36, 192, 49, 259, 64, 336, 81, 423, 100, 520, 121, 627, 144, 744, 169, 871, 196, 1008, 225, 1155, 256, 1312, 289, 1479, 324, 1656, 361, 1843, 400, 2040, 441, 2247, 484, 2464, 529, 2691, 576, 2928, 625, 3175, 676, 3432, 729
Offset: 1

Views

Author

Amarnath Murthy, Jun 20 2003

Keywords

Comments

This is very nearly a linear recurrence, but the distinctness requirement occasionally foils it. - Charles R Greathouse IV, Nov 07 2014

Examples

			(a(1) + a(2) + a(3) + a(4) + a(5))/5 = (1+7+4+24+9)/5 = 9 = 3^2.
		

Crossrefs

Cf. A168668.

Programs

  • Maple
    b:= proc(n) is(n>1) end:
    s:= proc(n) option remember;
          `if`(n=1, 1, s(n-1)+a(n))
        end:
    a:= proc(n) option remember; local k;
          if n=1 then 1
        else for k from n-irem(s(n-1),n) by n
             do if b(k) and issqr((s(n-1)+k)/n)
                   then b(k):=false; return k
                fi
             od
          fi
        end:
    seq(a(n), n=1..150);  # Alois P. Heinz, Nov 07 2014
  • Mathematica
    Clear[a, b, s]; b[n_] := n>1; s[n_] := s[n] = If[n == 1, 1, s[n-1] + a[n]]; a[n_] := a[n] = Module[{k}, If [n == 1, 1, For[k = n - Mod[s[n-1], n], True, k = k+n, If[b[k] && IntegerQ[Sqrt[(s[n-1]+k)/n]], b[k] = False; Return[k]]]]]; Table[a[n], {n, 1, 150}] (* Jean-François Alcover, Jun 10 2015, after Alois P. Heinz *)
  • PARI
    v=[1]; n=1; while(#v<50, s=(n+vecsum(v))/(#v+1); if(type(s)=="t_INT", if(issquare(s)&&!vecsearch(vecsort(v), n), v=concat(v, n); n=0)); n++); v \\ Derek Orr, Nov 05 2014, edited Jun 26 2015

Formula

a(2*n-1) = n^2; a(2*n) = n*(2+5*n). Also, (1/(2*n))*(Sum_{i=1..n} i^2 + i*(2+5*i)) = (n+1)^2 and (1/(2*n-1))*(Sum_{i=1..n} i^2 + (i-1)*(5*i-3)) = k^2. Thus the arithmetic mean of the first 2*n terms is (n+1)^2 and the arithmetic mean of the first 2*n-1 terms is n^2. - Derek Orr, Jun 26 2015

Extensions

More terms from David Wasserman, Jan 11 2005
Incorrect formulas and programs removed by Charles R Greathouse IV, Nov 07 2014

A273982 Number of little cubes visible around an n X n X n cube with a face on a table.

Original entry on oeis.org

1, 8, 25, 52, 89, 136, 193, 260, 337, 424, 521, 628, 745, 872, 1009, 1156, 1313, 1480, 1657, 1844, 2041, 2248, 2465, 2692, 2929, 3176, 3433, 3700, 3977, 4264, 4561, 4868, 5185, 5512, 5849, 6196, 6553, 6920, 7297, 7684, 8081, 8488, 8905, 9332, 9769, 10216
Offset: 1

Views

Author

Sébastien Dumortier, Jun 05 2016

Keywords

Comments

There are fewer visible cubes on the bottom than on the top.

Examples

			a(3)=25 because around a 3 X 3 X 3 cube, when it's on a table, it's possible to see only 25 little cubes (8 on each of the 2 bottom layers and 9 on the top layer).
		

Crossrefs

Programs

  • Magma
    [5*n^2-8*n+4: n in [1..60]]; // Vincenzo Librandi, Jun 06 2016
    
  • Maple
    A273982:=n->5*n^2-8*n+4: seq(A273982(n), n=1..60); # Wesley Ivan Hurt, Oct 06 2017
  • Mathematica
    Table[5 n^2 - 8 n + 4, {n, 46}] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 8, 25}, 46] (* or *)
    CoefficientList[Series[(-1 - 5 x - 4 x^2)/(-1 + x)^3, {x, 0, 45}], x] (* Michael De Vlieger, Oct 06 2017 *)
  • PARI
    a(n) = 5*n^2 - 8*n + 4; \\ Altug Alkan, Oct 06 2017

Formula

a(n) = 5*n^2 - 8*n + 4.
a(n) = n^3 - (n-2)^3 - (n-2)^2. - Joerg Arndt, Jun 06 2016
a(n) = A168668(n-1) + 1. - Altug Alkan, Oct 06 2017
G.f.: (-1 - 5*x - 4*x^2)/(-1 + x)^3. - Michael De Vlieger, Oct 06 2017
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. - Wesley Ivan Hurt, Oct 06 2017
a(n) = A000566(n-1) + A000566(n), the sum of consecutive heptagonal numbers. - Charlie Marion, Jul 01 2021
a(n) = n^2 + 4*(n-1)^2. - Leo Tavares, Mar 24 2022

Extensions

a(2) corrected and entry edited by Andrey Zabolotskiy, Oct 06 2017

A330082 a(n) = 5*A064038(n+1).

Original entry on oeis.org

0, 5, 15, 15, 25, 75, 105, 70, 90, 225, 275, 165, 195, 455, 525, 300, 340, 765, 855, 475, 525, 1155, 1265, 690, 750, 1625, 1755, 945, 1015, 2175, 2325, 1240, 1320, 2805, 2975, 1575, 1665, 3515, 3705, 1950, 2050, 4305, 4515, 2365, 2475, 5175, 5405, 2820, 2940
Offset: 0

Views

Author

Paul Curtz, Dec 01 2019

Keywords

Comments

Main column of a pentagonal spiral for A026741:
(25)
49 (15) 31
24 29 (15) 8 16
47 14 7 ( 5) 3 17 33
23 27 13 2 ( 0) 1 7 9 17
45 13 6 3 1 4 19 35
22 25 11 5 9 10 18
43 12 23 11 21 37
21 41 20 39 19
a(n) = 5 * A064038(n+1) from a pentagonal spiral.
Compare to A319127 = 6 * A002620 in the hexagonal spiral:
22 23 23 22 (24)
20 12 13 13 (12) 25
21 10 5 4 ( 6) 14 25
21 11 5 1 ( 0) 7 15 24
20 11 4 1 ( 0) 2 7 15 26
18 10 2 3 3 6 14 27
19 8 9 9 8 16 27
19 18 16 17 17 26
30 28 29 29 28

Crossrefs

Programs

  • Mathematica
    A330082[n_]:=5Numerator[n(n+1)/4];Array[A330082,100,0] (* Paolo Xausa, Dec 04 2023 *)
  • PARI
    concat(0, Vec(5*x*(1 + 4*x^3 + x^6) / ((1 - x)^3*(1 + x^2)^3) + O(x^50))) \\ Colin Barker, Dec 08 2019

Formula

a(n) = A026741(A028895(n)).
From Colin Barker, Dec 08 2019: (Start)
G.f.: 5*x*(1 + 4*x^3 + x^6) / ((1 - x)^3*(1 + x^2)^3).
a(n) = 3*a(n-1) - 6*a(n-2) + 10*a(n-3) - 12*a(n-4) + 12*a(n-5) - 10*a(n-6) + 6*a(n-7) - 3*a(n-8) + a(n-9) for n>8.
a(n) = (-5/16 + (5*i)/16)*(((-3-3*i) + (-i)^n + i^(1+n))*n*(1+n)) where i=sqrt(-1).
(End)

Extensions

More terms from Colin Barker, Dec 22 2019
Name corrected by Paolo Xausa, Dec 04 2023

A332495 a(n-2) = a(n-6) + 5*(1+2*n) with a(0)=0, a(1)=2, a(2)=7, a(3)=15 for n>=4.

Original entry on oeis.org

0, 2, 7, 15, 25, 37, 52, 70, 90, 112, 137, 165, 195, 227, 262, 300, 340, 382, 427, 475, 525, 577, 632, 690, 750, 812, 877, 945, 1015, 1087, 1162, 1240, 1320, 1402, 1487, 1575, 1665, 1757, 1852, 1950, 2050, 2152, 2257
Offset: 0

Views

Author

Paul Curtz, Feb 14 2020

Keywords

Comments

a(-2)=2, a(-1)=0. 4 evens followed by 4 odds.
Last digit is only 0, 2, 5, 7.
The vertical spoke S-N of the pentagonal spiral for A004526.
37
37 25 25
36 24 15 15 26
36 24 14 7 8 16 26
35 23 14 7 2 3 8 16 27
35 23 13 6 2 0 0 3 9 17 27
34 22 13 6 1 1 4 9 17 28
34 22 12 5 5 4 10 18 28
33 21 12 11 11 10 18 29
33 21 20 20 19 19 29
32 32 31 31 30 30
Rank of multiples of 10: 0, 7, 8, 15, 16, ... = A047521. Compare to A154260 in the formula.

Crossrefs

Cf. A004526, A033429, A062786, A168668, A135706, A147874, 2*A147875 (all in the spiral).

Programs

  • Mathematica
    CoefficientList[Series[x (2 + x + 2 x^2)/((1 - x)^3*(1 + x^2)), {x, 0, 42}], x] (* Michael De Vlieger, Feb 14 2020 *)
  • PARI
    concat(0, Vec(x*(2 + x + 2*x^2) / ((1 - x)^3*(1 + x^2)) + O(x^40))) \\ Colin Barker, Feb 14 2020

Formula

a(-1-n) = a(n).
a(2*n) + a(1+2*n) = 2, 22, 62, ... = A273366(n).
Second differences give the sequence of period 4: repeat [3, 3, 2, 2].
From Colin Barker, Feb 14 2020: (Start)
G.f.: x*(2 + x + 2*x^2) / ((1 - x)^3*(1 + x^2)).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4.
(End)
Multiples of 10: 10*(0, 7, 9, 30, 34, ... = A154260).
4*a(n) = A087960(n) +5*n -1 +5*n^2. - R. J. Mathar, Feb 28 2020
Showing 1-10 of 11 results. Next