A131242
Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0
As square array :
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12, 14, 16, 18, 20, 22, 24, 26, 28, 30
33, 36, 39, 42, 45, 48, 51, 54, 57, 60
64, 68, 72, 76, 80, 84, 88, 92, 96, 100
105, 110, 115, 120, 125, 130, 135, 140, 145, 150
156, 162, 168, 174, 180, 186, 192, 198, 204, 210
... - _Philippe Deléham_, Mar 27 2013
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,-2,1).
Cf.
A008728,
A059995,
A010879,
A002266,
A130488,
A000217,
A002620,
A130518,
A130519,
A130520,
A174709,
A174738,
A118729,
A218470.
-
Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
-
for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016
A254963
a(n) = n*(11*n + 3)/2.
Original entry on oeis.org
0, 7, 25, 54, 94, 145, 207, 280, 364, 459, 565, 682, 810, 949, 1099, 1260, 1432, 1615, 1809, 2014, 2230, 2457, 2695, 2944, 3204, 3475, 3757, 4050, 4354, 4669, 4995, 5332, 5680, 6039, 6409, 6790, 7182, 7585, 7999, 8424, 8860, 9307, 9765, 10234, 10714, 11205, 11707
Offset: 0
Cf. similar sequences of the type 4*n^2 + k*n*(n+1)/2:
A055999 (k=-7, n>6),
A028552 (k=-6, n>2),
A095794 (k=-5, n>1),
A046092 (k=-4, n>0),
A000566 (k=-3),
A049450 (k=-2),
A022264 (k=-1),
A016742 (k=0),
A022267 (k=1),
A202803 (k=2), this sequence (k=3),
A033580 (k=4).
-
[n*(11*n+3)/2: n in [0..50]];
-
Table[n (11 n + 3)/2, {n, 0, 50}]
LinearRecurrence[{3,-3,1},{0,7,25},50] (* Harvey P. Dale, Mar 25 2018 *)
-
makelist(n*(11*n+3)/2, n, 0, 50);
-
vector(50, n, n--; n*(11*n+3)/2)
-
[n*(11*n+3)/2 for n in (0..50)]
A202803
a(n) = n*(5*n+1).
Original entry on oeis.org
0, 6, 22, 48, 84, 130, 186, 252, 328, 414, 510, 616, 732, 858, 994, 1140, 1296, 1462, 1638, 1824, 2020, 2226, 2442, 2668, 2904, 3150, 3406, 3672, 3948, 4234, 4530, 4836, 5152, 5478, 5814, 6160, 6516, 6882, 7258, 7644, 8040, 8446, 8862, 9288, 9724, 10170
Offset: 0
G.f. = 6*x + 22*x^2 + 48*x^3 + 84*x^4 + 130*x^5 +186*x^6 + 252*x^7 + 328*x^8 + ...
-
List([0..50], n-> n*(5*n+1)); # G. C. Greubel, Jul 04 2019
-
[n*(5*n+1):n in [0..50]]; // Vincenzo Librandi, Aug 11 2014
-
CoefficientList[Series[2x(3+2x)/(1-x)^3, {x, 0, 50}] ,x] (* Vincenzo Librandi, Aug 11 2014 *)
Table[5*n^2+n, {n,0,50}] (* G. C. Greubel, Jul 04 2019 *)
-
a(n)=n*(5*n+1) \\ Charles R Greathouse IV, Jun 17 2017
-
[n*(5*n+1) for n in (0..50)] # G. C. Greubel, Jul 04 2019
A002789
Number of integer points in a certain quadrilateral scaled by a factor of n.
Original entry on oeis.org
2, 4, 7, 11, 16, 21, 28, 35, 43, 52, 62, 72, 84, 96, 109, 123, 138, 153, 170, 187, 205, 224, 244, 264, 286, 308, 331, 355, 380, 405, 432, 459, 487, 516, 546, 576, 608, 640, 673, 707, 742, 777, 814, 851, 889, 928, 968, 1008, 1050, 1092, 1135, 1179, 1224, 1269
Offset: 1
G.f. = 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 16*x^5 + 21*x^6 + 28*x^7 + 35*x^8 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- E. Ehrhart, Sur un problème de géométrie diophantienne linéaire I, (Polyèdres et réseaux), J. Reine Angew. Math. 226 1967 1-29. MR0213320 (35 #4184).
- E. Ehrhart, Sur un problème de géométrie diophantienne linéaire I, (Polyèdres et réseaux), J. Reine Angew. Math. 226 1967 1-29. MR0213320 (35 #4184). [Annotated scanned copy of pages 16 and 22 only]
- E. Ehrhart, Sur un problème de géométrie diophantienne linéaire II. Systemes diophantiens lineaires, J. Reine Angew. Math. 227 1967 25-49. [Annotated scanned copy of pages 47-49 only]
- Wikipedia, Ehrhart polynomial
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
-
a[ n_] := Quotient[ 7 + 12 n + 5 n^2, 12]; (* Michael Somos, May 22 2014 *)
a[ n_] := Length @ With[{o = Boole[ 0 < n], c = Boole[ 0 >= n], m = Abs@n}, FindInstance[ 0 < o + x && 0 < o + y && (2 x < o + m && 4 x + 3 y < c + 3 m || m < c + 2 x && 2 x + 3 y < o + 2 m), {x, y}, Integers, 10^9]]; (* Michael Somos, May 22 2014 *)
-
{a(n) = (7 + 12*n + 5*n^2) \ 12}; /* Michael Somos, May 22 2014 */
-
{a(n) = if( n<0, polcoeff( x^3 * (1 + x + x^2 + 2*x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^-n), -n), polcoeff( x * (2 + x^2 + x^3 + x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^n), n))}; /* Michael Somos, May 22 2014 */
A249547
a(n) = (10*n^2+8*n-1+(-1)^n)/8.
Original entry on oeis.org
0, 2, 7, 14, 24, 36, 51, 68, 88, 110, 135, 162, 192, 224, 259, 296, 336, 378, 423, 470, 520, 572, 627, 684, 744, 806, 871, 938, 1008, 1080, 1155, 1232, 1312, 1394, 1479, 1566, 1656, 1748, 1843, 1940, 2040, 2142, 2247, 2354, 2464, 2576, 2691, 2808, 2928, 3050
Offset: 0
-
[(10*n^2+8*n-1+(-1)^n)/8 : n in [0..50]];
-
A249547:=n->(10*n^2+8*n-1+(-1)^n)/8: seq(A249547(n), n=0..100);
-
Table[(10*n^2 + 8 n - 1 + (-1)^n)/8 , {n, 0, 50}]
-
a(n) = (10*n^2+8*n-1+(-1)^n)/8; \\ Michel Marcus, Nov 04 2014
-
concat(0, Vec(x*(2+3*x)/((1-x)^3*(1+x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015
A272039
a(n) = 10*n^2 + 4*n + 1.
Original entry on oeis.org
1, 15, 49, 103, 177, 271, 385, 519, 673, 847, 1041, 1255, 1489, 1743, 2017, 2311, 2625, 2959, 3313, 3687, 4081, 4495, 4929, 5383, 5857, 6351, 6865, 7399, 7953, 8527, 9121, 9735, 10369, 11023, 11697, 12391, 13105, 13839, 14593, 15367, 16161, 16975, 17809, 18663, 19537
Offset: 0
Cf.
A000292,
A000330,
A000578,
A002411,
A004068,
A005900,
A006003,
A167875,
A168668,
A228219,
A272124,
A272130.
-
[10*n^2+4*n+1: n in [0..50]];
-
Table[10 n^2 + 4 n + 1, {n, 0, 50}]
LinearRecurrence[{3,-3,1},{1,15,49},50] (* Harvey P. Dale, Dec 26 2021 *)
-
a(n)=10*n^2+4*n+1 \\ Charles R Greathouse IV, Jun 17 2017
A085047
a(n) is the least number not already used such that the arithmetic mean of the first n terms is a square.
Original entry on oeis.org
1, 7, 4, 24, 9, 51, 16, 88, 25, 135, 36, 192, 49, 259, 64, 336, 81, 423, 100, 520, 121, 627, 144, 744, 169, 871, 196, 1008, 225, 1155, 256, 1312, 289, 1479, 324, 1656, 361, 1843, 400, 2040, 441, 2247, 484, 2464, 529, 2691, 576, 2928, 625, 3175, 676, 3432, 729
Offset: 1
(a(1) + a(2) + a(3) + a(4) + a(5))/5 = (1+7+4+24+9)/5 = 9 = 3^2.
-
b:= proc(n) is(n>1) end:
s:= proc(n) option remember;
`if`(n=1, 1, s(n-1)+a(n))
end:
a:= proc(n) option remember; local k;
if n=1 then 1
else for k from n-irem(s(n-1),n) by n
do if b(k) and issqr((s(n-1)+k)/n)
then b(k):=false; return k
fi
od
fi
end:
seq(a(n), n=1..150); # Alois P. Heinz, Nov 07 2014
-
Clear[a, b, s]; b[n_] := n>1; s[n_] := s[n] = If[n == 1, 1, s[n-1] + a[n]]; a[n_] := a[n] = Module[{k}, If [n == 1, 1, For[k = n - Mod[s[n-1], n], True, k = k+n, If[b[k] && IntegerQ[Sqrt[(s[n-1]+k)/n]], b[k] = False; Return[k]]]]]; Table[a[n], {n, 1, 150}] (* Jean-François Alcover, Jun 10 2015, after Alois P. Heinz *)
-
v=[1]; n=1; while(#v<50, s=(n+vecsum(v))/(#v+1); if(type(s)=="t_INT", if(issquare(s)&&!vecsearch(vecsort(v), n), v=concat(v, n); n=0)); n++); v \\ Derek Orr, Nov 05 2014, edited Jun 26 2015
A273982
Number of little cubes visible around an n X n X n cube with a face on a table.
Original entry on oeis.org
1, 8, 25, 52, 89, 136, 193, 260, 337, 424, 521, 628, 745, 872, 1009, 1156, 1313, 1480, 1657, 1844, 2041, 2248, 2465, 2692, 2929, 3176, 3433, 3700, 3977, 4264, 4561, 4868, 5185, 5512, 5849, 6196, 6553, 6920, 7297, 7684, 8081, 8488, 8905, 9332, 9769, 10216
Offset: 1
a(3)=25 because around a 3 X 3 X 3 cube, when it's on a table, it's possible to see only 25 little cubes (8 on each of the 2 bottom layers and 9 on the top layer).
-
[5*n^2-8*n+4: n in [1..60]]; // Vincenzo Librandi, Jun 06 2016
-
A273982:=n->5*n^2-8*n+4: seq(A273982(n), n=1..60); # Wesley Ivan Hurt, Oct 06 2017
-
Table[5 n^2 - 8 n + 4, {n, 46}] (* or *)
LinearRecurrence[{3, -3, 1}, {1, 8, 25}, 46] (* or *)
CoefficientList[Series[(-1 - 5 x - 4 x^2)/(-1 + x)^3, {x, 0, 45}], x] (* Michael De Vlieger, Oct 06 2017 *)
-
a(n) = 5*n^2 - 8*n + 4; \\ Altug Alkan, Oct 06 2017
Original entry on oeis.org
0, 5, 15, 15, 25, 75, 105, 70, 90, 225, 275, 165, 195, 455, 525, 300, 340, 765, 855, 475, 525, 1155, 1265, 690, 750, 1625, 1755, 945, 1015, 2175, 2325, 1240, 1320, 2805, 2975, 1575, 1665, 3515, 3705, 1950, 2050, 4305, 4515, 2365, 2475, 5175, 5405, 2820, 2940
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-6,10,-12,12,-10,6,-3,1).
-
A330082[n_]:=5Numerator[n(n+1)/4];Array[A330082,100,0] (* Paolo Xausa, Dec 04 2023 *)
-
concat(0, Vec(5*x*(1 + 4*x^3 + x^6) / ((1 - x)^3*(1 + x^2)^3) + O(x^50))) \\ Colin Barker, Dec 08 2019
A332495
a(n-2) = a(n-6) + 5*(1+2*n) with a(0)=0, a(1)=2, a(2)=7, a(3)=15 for n>=4.
Original entry on oeis.org
0, 2, 7, 15, 25, 37, 52, 70, 90, 112, 137, 165, 195, 227, 262, 300, 340, 382, 427, 475, 525, 577, 632, 690, 750, 812, 877, 945, 1015, 1087, 1162, 1240, 1320, 1402, 1487, 1575, 1665, 1757, 1852, 1950, 2050, 2152, 2257
Offset: 0
-
CoefficientList[Series[x (2 + x + 2 x^2)/((1 - x)^3*(1 + x^2)), {x, 0, 42}], x] (* Michael De Vlieger, Feb 14 2020 *)
-
concat(0, Vec(x*(2 + x + 2*x^2) / ((1 - x)^3*(1 + x^2)) + O(x^40))) \\ Colin Barker, Feb 14 2020
Showing 1-10 of 11 results.
Comments