cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A031877 Nontrivial reversal numbers (numbers which are integer multiples of their reversals), excluding palindromic numbers and multiples of 10.

Original entry on oeis.org

8712, 9801, 87912, 98901, 879912, 989901, 8799912, 9899901, 87128712, 87999912, 98019801, 98999901, 871208712, 879999912, 980109801, 989999901, 8712008712, 8791287912, 8799999912, 9801009801, 9890198901, 9899999901, 87120008712, 87912087912, 87999999912
Offset: 1

Views

Author

Keywords

Comments

The terms of this sequence are sometimes called palintiples.
All terms are of the form 87...12 = 4*21...78 or 98...01 = 9*10...89. [This was proved by Hoey, 1992. - N. J. A. Sloane, Oct 19 2014] More precisely, they are obtained from concatenated copies of either 8712 or 9801, with 9's inserted "in the middle of" these and/or 0's inserted between the copies these, in a symmetrical way. A008919 lists the reversals, but not in the same order, e.g., R(a(2)) < R(a(1)). - M. F. Hasler, Aug 18 2014
There are 2*Fibonacci(floor((n-2)/2)) terms with n digits (this is A214927 or essentially twice A103609). - Ray Chandler, Oct 11 2017

References

  • W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays (1939, page 13); 13th ed. New York: Dover, pp. 14-15, 1987.
  • G. H. Hardy, A Mathematician's Apology (Cambridge Univ. Press, 1940, reprinted 2000), pp. 104-105 (describes this problem as having "nothing in [it] which appeals much to a mathematician.").

Crossrefs

See A008919 for reversals (this is the main entry for the problem).
Union of A222814 and A222815.
Subsequence of A118959.

Programs

  • Haskell
    a031877_list = [x | x <- [1..], x `mod` 10 > 0,
                        let x' = a004086 x, x' /= x && x `mod` x' == 0]
    -- Reinhard Zumkeller, Jul 15 2013
    
  • Mathematica
    fQ[n_] := Block[{id = IntegerDigits@n}, Mod[n, FromDigits@ Reverse@id] == 0 && n != FromDigits@ Reverse@ id && Mod[n, 10] > 0]; k = 1; lst = {}; While[k < 10^9, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Jun 11 2010 *)
    okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[Flatten[ {(4*198)#,(9*99)#}&/@Flatten[Table[FromDigits/@Select[Tuples[ {0,1},n], okQ],{n,12}]]]] (* Harvey P. Dale, Jul 03 2013 *)
  • PARI
    is_A031877(n)={n%10 && n%A004086(n)==0 && n>A004086(n)} \\ M. F. Hasler, Aug 18 2014
    
  • Python
    A031877 = []
    for n in range(1,10**7):
        if n % 10:
            s1 = str(n)
            s2 = s1[::-1]
            if s1 != s2 and not n % int(s2):
                A031877.append(n) # Chai Wah Wu, Sep 05 2014

Formula

a(n) = A004086(a(n))*[9/(a(n)%10)], where [...]=9 if a(n) ends in "1" and [...]=4 if a(n) ends in "2". - M. F. Hasler, Aug 18 2014

Extensions

More terms from Jud McCranie, Aug 15 2001
More terms from Sam Mathers, Aug 18 2014

A281625 Numbers m>0 such that m = k*(reversal of k*m) for some k<=m.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99, 100, 101, 110, 111, 121, 131, 141, 151, 161, 171, 181, 191, 200, 202, 212, 220, 222, 232, 242, 252, 262, 272, 282, 292, 300, 303, 313, 323, 330, 333, 343, 353
Offset: 1

Views

Author

Jaroslav Krizek, Feb 11 2017

Keywords

Comments

Generalization of palindrome numbers in base 10.
Sequence is not the same as A061917 or A169824; a(188) = 3267 is not a term of these sequences.
Supersequence of A002113 (palindromes in base 10) and A061917.
Sequences a(n)_k of numbers m such that m = k*(reversal of k*m) for k <= 30 and n >= 1:
a(n)_1 = A002113(n+1) (palindromes > 0 in base 10);
a(n)_2 = 4356, 43956, 439956, 4399956, 43999956, 439999956, ...;
a(n)_3 = 3267, 32967, 329967, 3299967, 32999967, 329999967, ...;
a(n)_5 = a(n)_20 = 10*a(n)_2 = 43560, 439560, 4399560, 43999560, ...;
a(n)_8 = 6600, 6606600, 66006600, 660006600, ...;
a(n)_10 = 10*A002113(n+1): 10, 20, 30, 40, 50, 60, 70, 80, 90, 110, ... ;
a(n)_30 = 10*a(n)_3 = 32670, 329670, 3299670, 32999670, ...

Examples

			3267 is in the sequence because 3267 = 3*(reversal of 3*3267) = 3*(reversal of 9801) = 3*1089.
		

Crossrefs

Programs

  • Magma
    [n: k in [1..n], n in [1..1000] | n eq k * Seqint(Reverse(Intseq(k*n)))];
  • Maple
    read("transforms") :
    isA281625 := proc(n)
        for k from 1 to n do
            if k*digrev(k*n) = n then
                return true ;
            end if;
        end do:
        false;
    end proc:
    A281625 := proc(n)
        option remember ;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA281625(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A281625(n),n=1..100) ; # R. J. Mathar, Aug 06 2019
  • Mathematica
    Select[Range@ 353, Function[n, Total@ Boole@ Map[Function[k, n == k FromDigits@ Reverse[IntegerDigits[k n]]], Range@ n] > 0]] (* Michael De Vlieger, Feb 11 2017 *)

A345361 Numbers that are not palindromes even after removing trailing zeros and are divisible by their reverses.

Original entry on oeis.org

510, 540, 810, 2100, 4200, 5100, 5200, 5400, 5610, 5700, 5940, 6300, 8100, 8400, 8712, 8910, 9801, 21000, 23100, 27000, 42000, 46200, 51000, 51510, 52000, 52200, 52800, 54000, 54540, 56100, 56610, 57000, 57200, 59400, 59940, 63000, 65340, 69300, 81000, 81810, 84000, 87120
Offset: 1

Views

Author

Tanya Khovanova, Jun 16 2021

Keywords

Comments

Palindromes with or without trailing zeros are trivially divisible their reverses.
If k is in the sequence then 10*k is in the sequence. - David A. Corneth, Jun 16 2021

Examples

			510 is divisible by its reverse 15. Thus, 510 is in this sequence.
		

Crossrefs

Programs

  • Python
    def pal(s): return s == s[::-1]
    def rmz(s): return s.strip('0')
    def ok(n): s = str(n); return not (pal(s) or pal(rmz(s)) or n%int(s[::-1]))
    print(list(filter(ok, range(82000)))) # Michael S. Branicky, Jun 16 2021
Showing 1-3 of 3 results.