A031877 Nontrivial reversal numbers (numbers which are integer multiples of their reversals), excluding palindromic numbers and multiples of 10.
8712, 9801, 87912, 98901, 879912, 989901, 8799912, 9899901, 87128712, 87999912, 98019801, 98999901, 871208712, 879999912, 980109801, 989999901, 8712008712, 8791287912, 8799999912, 9801009801, 9890198901, 9899999901, 87120008712, 87912087912, 87999999912
Offset: 1
References
- W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays (1939, page 13); 13th ed. New York: Dover, pp. 14-15, 1987.
- G. H. Hardy, A Mathematician's Apology (Cambridge Univ. Press, 1940, reprinted 2000), pp. 104-105 (describes this problem as having "nothing in [it] which appeals much to a mathematician.").
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Martin Beech, A Computer Conjecture of a Non-Serious Theorem, Mathematical Gazette, 74 (No. 467, March 1990), 50-51.
- Patrick De Geest, Palindromic Products of Integers and their Reversals
- D. J. Hoey, Palintiples
- D. J. Hoey, Palintiples [Cached copy]
- Benjamin V. Holt, Some General Results and Open Questions on Palintiple Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 14, Paper A42, 2014.
- Benjamin V. Holt, A Determination of Symmetric Palintiples, arXiv:1410.2356 [math.NT], 2014.
- Benjamin V. Holt, Families of Asymmetric Palintiples Constructed from Symmetric and Shifted-Symmetric Palintiples, arXiv:1412.0231 [math.NT], 2014.
- L. H. Kendrick, Young Graphs: 1089 et al, arXiv:1410.0106 [math.NT], 2014.
- L. H. Kendrick, Young Graphs: 1089 et al., J. Int. Seq. 18 (2015) 15.9.7.
- Lara Pudwell, Digit Reversal Without Apology, Mathematics Magazine, Vol. 80 (2007), pp. 129-132.
- N. J. A. Sloane, 2178 And All That, Fib. Quart., 52 (2014), 99-120.
- N. J. A. Sloane, 2178 And All That [Local copy]
- Eric Weisstein's World of Mathematics, Reversal.
Crossrefs
Programs
-
Haskell
a031877_list = [x | x <- [1..], x `mod` 10 > 0, let x' = a004086 x, x' /= x && x `mod` x' == 0] -- Reinhard Zumkeller, Jul 15 2013
-
Mathematica
fQ[n_] := Block[{id = IntegerDigits@n}, Mod[n, FromDigits@ Reverse@id] == 0 && n != FromDigits@ Reverse@ id && Mod[n, 10] > 0]; k = 1; lst = {}; While[k < 10^9, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Jun 11 2010 *) okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[Flatten[ {(4*198)#,(9*99)#}&/@Flatten[Table[FromDigits/@Select[Tuples[ {0,1},n], okQ],{n,12}]]]] (* Harvey P. Dale, Jul 03 2013 *)
-
PARI
is_A031877(n)={n%10 && n%A004086(n)==0 && n>A004086(n)} \\ M. F. Hasler, Aug 18 2014
-
Python
A031877 = [] for n in range(1,10**7): if n % 10: s1 = str(n) s2 = s1[::-1] if s1 != s2 and not n % int(s2): A031877.append(n) # Chai Wah Wu, Sep 05 2014
Formula
a(n) = A004086(a(n))*[9/(a(n)%10)], where [...]=9 if a(n) ends in "1" and [...]=4 if a(n) ends in "2". - M. F. Hasler, Aug 18 2014
Extensions
More terms from Jud McCranie, Aug 15 2001
More terms from Sam Mathers, Aug 18 2014
Comments