cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A171271 Numbers n such that phi(n)=2*phi(n-1).

Original entry on oeis.org

3, 5, 17, 155, 257, 287, 365, 805, 1067, 2147, 3383, 4551, 6107, 7701, 8177, 9269, 11285, 12557, 12971, 16403, 19229, 19277, 20273, 25133, 26405, 27347, 29155, 29575, 35645, 36419, 38369, 39647, 40495, 47215, 52235, 54653, 65537, 84863
Offset: 1

Views

Author

Farideh Firoozbakht, Feb 23 2010

Keywords

Comments

Theorem: A prime p is in the sequence iff p is a Fermat prime.
Proof: If p=2^2^n+1 is prime (Fermat prime) then phi(p)=2^2^n=2* phi(2^2^n)=2*phi(p-1), so p is in the sequence. Now if p is a prime term of the sequence then phi(p)=2*phi(p-1) so p-1=2*phi(p-1) and we deduce that p-1=2^m hence p is a Fermat prime.

Crossrefs

Programs

Formula

a(n) = A050472(n) + 1. - Ray Chandler, May 01 2015

A256907 Numbers n such that phi(n) = 3*phi(n+1).

Original entry on oeis.org

119, 527, 545, 2849, 3689, 4487, 6649, 18619, 26771, 30377, 44659, 47585, 50507, 76997, 83021, 102167, 112463, 128933, 138773, 163877, 174437, 192881, 193115, 198263, 217967, 236441, 243827, 244001, 254539, 268067, 282359, 287825, 298115, 345059, 410123, 464645
Offset: 1

Views

Author

Mauro Fiorentini, Apr 12 2015

Keywords

Examples

			phi(545) = 3*phi(546) = 432.
		

Crossrefs

Cf. A171262.

Programs

  • Magma
    [n: n in [1..2*10^6] | EulerPhi(n) eq 3*EulerPhi(n+1)]; // Vincenzo Librandi, Apr 13 2015
  • Mathematica
    Select[Range@ 1000000, EulerPhi@# == 3 EulerPhi[# + 1] &] (* Michael De Vlieger, Apr 12 2015 *)
  • PARI
    s=[]; for(n=1, 1000000, if(eulerphi(n)==3*eulerphi(n+1), s=concat(s, n))); s \\ Colin Barker, Apr 12 2015
    

A256937 Numbers n such that phi(n) = 4*phi(n+1).

Original entry on oeis.org

629, 1469, 85139, 100889, 139859, 154979, 168149, 304079, 396899, 838199, 1107413, 1323449, 1465463, 2088839, 2160899, 2504879, 2684879, 2693249, 2800181, 3404609, 3512249, 3576869, 3885881, 4241819, 4500509, 4620659, 4822649, 5530709, 5805449
Offset: 1

Views

Author

Mauro Fiorentini, Apr 13 2015

Keywords

Examples

			phi(629) = 576 = 4*phi(630).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^7] | EulerPhi(n) eq 4*EulerPhi(n+1)]; // Vincenzo Librandi, Apr 14 2015
    
  • Maple
    A:= NULL:
    y:= numtheory:-phi(1):
    for n from 1 to 10^6 do
    x:= numtheory:-phi(n+1);
    if y = 4*x then A:= A, n fi;
    y:= x;
    od:
    A;  # Robert Israel, Apr 15 2015
  • Mathematica
    Select[Range@ 1000000, EulerPhi@ # == 4 EulerPhi[# + 1] &] (* Michael De Vlieger, Apr 13 2015 *)
    Position[Partition[EulerPhi[Range[6*10^6]],2,1],?(#[[1]]==4#[[2]]&),{1},Heads->False]//Flatten (* _Harvey P. Dale, Sep 18 2016 *)
  • PARI
    s=[]; for(n=1, 1000000, if(eulerphi(n)==4*eulerphi(n+1), s=concat(s, n))); s \\ Colin Barker, Apr 13 2015
    
  • Sage
    [n for n in (1..1000000) if euler_phi(n) == 4*euler_phi(n+1)]; # Bruno Berselli, Apr 14 2015

A257550 Numbers n such that phi(n) = 5*phi(n+1).

Original entry on oeis.org

17907119, 18828809, 31692569, 73421039, 179467469, 322757819, 337567229, 627702389, 975314339, 2537636009, 2722271369, 3328653509, 3917646809, 5529412349, 6369847469, 11179199849, 11201693579, 11363832479, 13442120999, 16781760449, 19751331599, 20002320029
Offset: 1

Views

Author

Ray Chandler, Apr 29 2015

Keywords

Examples

			phi(17907119) = 16588800 = 5*phi(17907120).
		

Crossrefs

Programs

  • Mathematica
    a1={};nmax=10^9;last=EulerPhi[1];n=2;
    While[nRay Chandler, Apr 30 2015 *)

Extensions

a(10)-a(22) from Giovanni Resta, May 11 2015

A257865 Smallest k such that phi(k) = n*phi(k+1), where phi(n) = A000010(n) gives the value of Euler's totient function at n.

Original entry on oeis.org

1, 5, 119, 629, 17907119
Offset: 1

Views

Author

Felix Fröhlich, May 11 2015

Keywords

Comments

From Manfred Scheucher, May 27 2015: (Start)
a(6)>=3*10^8 (calculation)
a(7)>=3.5*10^13, a(8)>=4.5*10^25, a(9)>=3.0*10^47, and so on... (doubly exponential lower bound, see uploaded pdf)
239719159679 and 239742643139 admit a ratio of 5.998... and 6.008..., resp.
There might be a relation to the sequence A098026. (End)

Examples

			a(3) = 119, because phi(119) == 3*phi(120) = 96 and 119 is the smallest k where this equality holds for n = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[EulerPhi[k] != n EulerPhi[k + 1], k++]; k, {n, 4}] (* Michael De Vlieger, May 12 2015 *)
  • PARI
    a(n) = my(k=1); while(eulerphi(k)!=n*eulerphi(k+1), k++); k

Formula

a(n) >= exp(exp(c(n-3))) with c=exp(gamma) and gamma being the Euler-Mascheroni_constant (see pdf). - Manfred Scheucher, May 27 2015

A258454 Numbers n such that phi(n) = 2*phi(n-2).

Original entry on oeis.org

3, 4, 5, 8, 17, 32, 257, 512, 527, 992, 1952, 2522, 5252, 6512, 7412, 10376, 23432, 23717, 26732, 27302, 35114, 36632, 37442, 45872, 47027, 49022, 51092, 65537, 78899, 84242, 92432, 98432, 98672, 114767, 115292, 131072, 227222, 231167, 240977, 328352, 369272
Offset: 1

Views

Author

Jaroslav Krizek, Sep 24 2015

Keywords

Comments

Conjecture: a prime p is in the sequence iff p is a Fermat prime (A019434).
This is not correct: the first non-Fermat prime term is 83623937 = 2^18*11*29 + 1. - Joerg Arndt, Oct 11 2015

Examples

			phi(32) = 16 = 2*phi(30) = 2*8, so 32 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [3..10000000] | EulerPhi(n) eq 2*EulerPhi(n-2)];
    
  • Mathematica
    Select[Range@ 400000, EulerPhi@ # == 2 EulerPhi[# - 2] &] (* Michael De Vlieger, Sep 25 2015 *)
  • PARI
    for(n=1, 1e6, if(eulerphi(n) == 2*eulerphi(n-2), print1(n", "))); \\ Altug Alkan, Sep 26 2015
Showing 1-6 of 6 results.