cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A122803 Powers of -2: a(n) = (-2)^n.

Original entry on oeis.org

1, -2, 4, -8, 16, -32, 64, -128, 256, -512, 1024, -2048, 4096, -8192, 16384, -32768, 65536, -131072, 262144, -524288, 1048576, -2097152, 4194304, -8388608, 16777216, -33554432, 67108864, -134217728, 268435456, -536870912, 1073741824, -2147483648, 4294967296, -8589934592, 17179869184
Offset: 0

Views

Author

Keywords

Comments

The number -2 can be used as a base of numeration (see the Weisstein link). - Alonso del Arte, Mar 30 2014
Contribution from M. F. Hasler, Oct 21 2014: (Start)
This is the inverse binomial transform of A033999 = n->(-1)^n, and the binomial transform of A033999*A000244 = n->(-3)^n, see also A141413.
Prefixed with one 0, i.e., (0,1,-2,4,...) = -A033999*A131577, it is the binomial transform of (0, 1, -4, 13, -40, 121,...) = -A033999*A003462, and inverse binomial transform of (0,1,0,1,0,1,...) = A000035.
Prefixed with two 0's, i.e., (0,0,1,-2,4,-8,...), it is the binomial transform of (0,0,1,-5,18,-58,179,-543,...) (cf. A000340) and inverse binomial transform of (0,0,1,1,2,2,3,3,...) = A004526. (End)
Prefixed with three 0's, this is the inverse binomial difference of (0, 0, 0, 1, 2, 4, 6, 9, 12, 16,...) = concat(0, A002620), which has as successive differences (0, 0, 1, 1, 2, 2,...) = A004526, then (0, 1, 0, 1,...) = A000035, then (1, -1, 1, -1,...) = A033999, and then (-2)^k*A033999 with k=1,2,3,... - Paul Curtz, Oct 16 2014, edited by M. F. Hasler, Oct 21 2014
Stirling-Bernoulli transform of triangular numbers: 1, 3, 6, 10, 15, 21, 28, ... - Philippe Deléham, May 25 2015

Crossrefs

Programs

Formula

a(n) = (-2)^n = (-1)^n * 2^n.
a(n) = -2*a(n-1), n > 0; a(0) = 1. G.f.: 1/(1+2x). - Philippe Deléham, Nov 19 2008
Sum_{n >= 0} 1/a(n) = 2/3. - Jaume Oliver Lafont, Mar 01 2009
E.g.f.: 1/exp(2*x). - Arkadiusz Wesolowski, Aug 13 2012
a(n) = Sum_{k = 0..n} (-2)^(n-k)*binomial(n, k)*A030195(n+1). - R. J. Mathar, Oct 15 2012
G.f.: 1/(1+2x). A122803 = A033999 * A000079. - M. F. Hasler, Oct 21 2014
a(n) = Sum_{k = 0..n} A163626(n,k)*A000217(k+1). - Philippe Deléham, May 25 2015

A186949 a(n) = 2^n - 2*(binomial(1,n) - binomial(0,n)).

Original entry on oeis.org

1, 0, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824
Offset: 0

Views

Author

Paul Barry, Mar 01 2011

Keywords

Comments

Binomial transform is A186948.
Second binomial transform is A186947.
Inverse binomial transform is (-1)^n * A168277(n).
Essentially the same as A000079, A151821, A155559, A171449, and A171559.

Programs

  • GAP
    Concatenation([1,0], List([2..30], n-> 2^n )); # G. C. Greubel, Dec 01 2019
  • Magma
    [n lt 2 select 1-n else 2^n: n in [0..30]]; // G. C. Greubel, Dec 01 2019
    
  • Maple
    seq( `if`(n<2, 1-n, 2^n), n=0..30); # G. C. Greubel, Dec 01 2019
  • Mathematica
    Table[If[n<2, 1-n, 2^n], {n, 0, 30}] (* G. C. Greubel, Dec 01 2019 *)
  • PARI
    vector(31, n, if(n<3, 2-n, 2^(n-1))) \\ G. C. Greubel, Dec 01 2019
    
  • Sage
    [1,0]+[2^n for n in (2..30)] # G. C. Greubel, Dec 01 2019
    

Formula

G.f.: (1 - 2*x + 4*x^2)/(1-2*x).
a(n) = Sum_{k=0..n} binomial(n,k)*(3^k - 2*k).
E.g.f.: exp(2*x) - 2*x. - G. C. Greubel, Dec 01 2019

A173078 a(n) = (5*2^n - 2*(-1)^n - 9)/3.

Original entry on oeis.org

1, 3, 11, 23, 51, 103, 211, 423, 851, 1703, 3411, 6823, 13651, 27303, 54611, 109223, 218451, 436903, 873811, 1747623, 3495251, 6990503, 13981011, 27962023, 55924051, 111848103, 223696211, 447392423, 894784851, 1789569703, 3579139411
Offset: 1

Views

Author

Paul Curtz, Feb 09 2010

Keywords

Comments

The sequence and higher-order differences in subsequent rows are
1, 3, 11, 23, 51, 103, 211, 423, 851, 1703, 3411, 6823, 13651
2, 8, 12, 28, 52, 108, 212, 428, 852, 1708, 3412, 6828, 13652
6, 4, 16, 24, 56, 104, 216, 424, 856, 1704, 3416, 6824, 13656
-2, 12, 8, 32, 48, 112, 208, 432, 848, 1712, 3408, 6832, 13648
14, -4, 24, 16, 64, 96, 224, 416, 864, 1696, 3424, 6816, 13664
-18, 28, -8, 48, 32, 128, 192, 448, 832, 1728, 3392, 6848, 1363
46, -36, 56, -16, 96, 64, 256, 384, 896, 1664, 3456, 6784, 1369
The main diagonal 1,8,16,... is essentially A000079.
A subdiagonal is 2, 4, 8, 16, ... A155559.
Other diagonals are 3, 12, 24, 48, ... = 3*A151821, 6, 12, 24, ... = A082505 and -2, -4, -8, -16, ..., a negated variant of A171449.

Programs

  • GAP
    List([1..40], n-> (5*2^n - 2*(-1)^n - 9)/3); # G. C. Greubel, Dec 01 2019
  • Magma
    [5*2^n/3-2*(-1)^n/3-3: n in [1..40]]; // Vincenzo Librandi, Aug 05 2011
    
  • Maple
    seq( (5*2^n -2*(-1)^n -9)/3, n=1..40); # G. C. Greubel, Dec 01 2019
  • Mathematica
    LinearRecurrence[{2,1,-2},{1,3,11},40] (* Harvey P. Dale, Oct 01 2018 *)
  • PARI
    vector(40, n, (5*2^n - 2*(-1)^n - 9)/3) \\ G. C. Greubel, Dec 01 2019
    
  • Sage
    [(5*2^n - 2*(-1)^n - 9)/3 for n in (1..40)] # G. C. Greubel, Dec 01 2019
    

Formula

a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n+1) - 2*a(n) = A010686(n-1).
a(n) = A084214(n+1) - 3.
G.f.: x*(1 + x + 4*x^2) / ( (1-x)*(1-2*x)*(1+x) ).
a(2n+3) - a(2n+1) = 10*A000302(n).
E.g.f.: (-2*exp(-x) + 6 - 9*exp(x) + 5*exp(2*x))/3. - G. C. Greubel, Dec 01 2019

A171501 Inverse binomial transform of A084640.

Original entry on oeis.org

0, 1, 3, -1, 7, -9, 23, -41, 87, -169, 343, -681, 1367, -2729, 5463, -10921, 21847, -43689, 87383, -174761, 349527, -699049, 1398103, -2796201, 5592407, -11184809, 22369623, -44739241, 89478487, -178956969, 357913943, -715827881
Offset: 0

Views

Author

Paul Curtz, Dec 10 2009

Keywords

Comments

a(n) and differences are
0, 1, 3, -1, 7, -9,
1, 2, -4, 8, -16, 32, =(-1)^(n+1) * A171449(n),
1, -6, 12, -24, 48, -96,
-7, 18, -36, 72, -144, 288,
25, -54, 108, -216, 432, -864,
Vertical: 1) 0 followed with A168589(n).
2) (-1 followed with A008776(n) ) signed. See A025192(n).
Main diagonal: see A167747(1+n). - Paul Curtz, Jun 16 2011

Programs

  • Magma
    I:=[0, 1, 3]; [n le 3 select I[n] else -Self(n-1) + 2*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 18 2012
  • Mathematica
    CoefficientList[Series[x*(1 + 4*x)/((1 + 2*x)*(1 - x)), {x, 0, 30}], x]
    LinearRecurrence[{-1,2},{0,1,3},40] (* Harvey P. Dale, Jan 14 2020 *)

Formula

a(n) = A140966(n), n>0.
G.f.: x*(1+4*x) / ( (1+2*x)*(1-x) ). - R. J. Mathar, Jun 14 2011
a(1+n)= (-1)^(1+n) * A001045(1+n) + 2. - Paul Curtz, Jun 16 2011

Extensions

Mathematica program by Olivier Gérard, Jul 06 2011

A171559 Powers of 2 (cf. A000079) with 1 replaced by 3.

Original entry on oeis.org

3, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Paul Curtz, Dec 11 2009

Keywords

Comments

First differences of A171449.

Formula

a(n+1)-a(n) = A171449(n).
a(n) + A171449(n) = A000079(n+1) = 2*A000079(n).
G.f.: (3-4*x)/(1-2*x).

Extensions

Edited by R. J. Mathar and N. J. A. Sloane, Dec 15 2009

A173197 a(0)=1, a(n)= 2+2^n/6+4*(-1)^n/3, n>0.

Original entry on oeis.org

1, 1, 4, 2, 6, 6, 14, 22, 46, 86, 174, 342, 686, 1366, 2734, 5462, 10926, 21846, 43694, 87382, 174766, 349526, 699054, 1398102, 2796206, 5592406, 11184814, 22369622, 44739246, 89478486, 178956974, 357913942, 715827886, 1431655766, 2863311534, 5726623062, 11453246126, 22906492246, 45812984494, 91625968982, 183251937966, 366503875926, 733007751854
Offset: 0

Views

Author

Paul Curtz, Feb 12 2010

Keywords

Comments

Linked to Jacobsthal numbers (expansion of tan(x), a.k.a. Zag numbers) A000182=1,2,16,272,...: a(n+1)-2a(n) = -(-1)^n*(A000182(n) mod 10) = (-1,2,-6,2,-6,2,-6,...).
Cf. A173114, related to Euler (or secant, or Zig) numbers, A000364. a(n+1)+A010684=A001045.
First differences: 0,3,-2,4,0,8,8,24,... = 0,A154879 (third differences of A001045).
Main diagonal: A003945; first upper diagonal: -A171449; second: 4*A011782.

Formula

a(n) = A093380(n+4), n>3.
a(n) = +2*a(n-1) +a(n-2) -2*a(n-3), n>3.
G.f.: 1-x*(-1-2*x+7*x^2)/((x-1)*(2*x-1)*(1+x)).
a(2n+2)+a(2n+3)=6*A047689.
a(2n)-a(2n-2) = 3,1,2,4,8,16,... = 3,A000079.
Showing 1-6 of 6 results.