cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A201511 Number of ways to place n nonattacking wazirs on an n X n board.

Original entry on oeis.org

1, 1, 2, 22, 405, 10741, 368868, 15516804, 771464278, 44218721793, 2868879752822, 207739939478618, 16602826428818482, 1451305771147909684, 137715836041691050398, 14096224186664736126206, 1547966111897855935957132, 181519663430661533452513680, 22636566614411901986006002896
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 02 2011

Keywords

Comments

Wazir is a leaper [0,1].

Crossrefs

Formula

Asymptotics (Vaclav Kotesovec, Nov 29 2011): a(n) ~ n^(2n)/n!*exp(-5/2).

Extensions

a(19)-a(20) from Vaclav Kotesovec, Aug 30 2016
a(0)=1 prepended by Alois P. Heinz, Apr 16 2024

A232833 Triangle read by rows: T(n,k) = number of n X n binary matrices with k pairwise nonadjacent 1's, n >= 0, k = 0..n^2.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 0, 0, 1, 9, 24, 22, 6, 1, 0, 0, 0, 0, 1, 16, 96, 276, 405, 304, 114, 20, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 25, 260, 1474, 5024, 10741, 14650, 12798, 7157, 2578, 618, 106, 14, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 36, 570, 5248, 31320, 127960, 368868
Offset: 0

Views

Author

Heinrich Ludwig, Dec 01 2013

Keywords

Comments

Also number of ways to place k non-attacking wazirs on an n X n board.
Two matrix elements are considered adjacent if the difference of their row indices is 1 and the column indices are equal, or vice versa (von Neumann neighborhood).
If only non-equivalent (mod D_4) matrices are counted, the corresponding numbers are given by A232569.
Rows with trailing zeros dropped give the coefficients of the independence polynomial for the n X n grid graph. - Eric W. Weisstein, May 31 2017

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,  2,   0,   0;
  1,  9, 24,  22,   6,   1,   0,  0, 0, 0;
  1, 16, 96, 276, 405, 304, 114, 20, 2, 0, 0, 0, 0, 0, 0, 0, 0;
  ...
		

Crossrefs

Cf. A232569, A006506 (row sums).
Main diagonal gives A201511.

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n=0 then 1
        elif min(l)>0 then b(n-1, map(x-> x-1, l))
        else for k while l[k]>0 do od;
             b(n, subsop(k=1, l))+expand(x*`if`(n>0, `if`(k (p-> seq(coeff(p,x,i), i=0..n^2))(b(n, [0$n])):
    seq(T(n), n=0..6);  # Alois P. Heinz, Apr 16 2024
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{k},
       Which[n == 0, 1,
       Min[l] > 0, b[n - 1, l - 1],
       True, For[k = 1, l[[k]] > 0, k++];
          b[n, ReplacePart[l, k -> 1]] + Expand[x*If[n > 0, If[k < Length[l],
          b[n, ReplacePart[l, {k -> 2, k + 1 -> 1}]],
          b[n, ReplacePart[l, k -> 2]], 0]]]]];
    T[n_] := With[{p = b[n, Table[0, {n}]]}, Table[Coefficient[p, x, i], {i, 0, n^2}]]
    Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Aug 09 2024, after Alois P. Heinz *)

Formula

T(n,0) = A000012(n);
T(n,1) = A000290(n), n >= 1;
T(n,2) = A172225(n), n >= 2;
T(n,3) = A172226(n), n >= 2;
T(n,4) = A172227(n), n >= 2;
T(n,5) = A172228(n), n >= 3;
T(n,6) = A178409(n), n >= 3;
T(n,7) = A201507(n), n >= 3;
T(n,8) = A201508(n), n >= 3;
T(n,9) = A201510(n), n >= 3;

Extensions

T(0,0)=1 inserted by Alois P. Heinz, Apr 16 2024

A172227 Number of ways to place 4 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 0, 6, 405, 5024, 31320, 133544, 446421, 1258590, 3126724, 7042930, 14669709, 28658436, 53069000, 93909924, 159819965, 262913874, 419816676, 652912510, 991835749, 1475233800, 2152832664, 3087838016, 4359706245, 6067321574, 8332617060, 11304678954
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

A wazir is a (fairy chess) leaper [0,1].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (4 x^8 - 26 x^7 + 3 x^6 + 303 x^5 - 736 x^4 + 180 x^3 + 1595 x^2 + 351 x + 6) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = (n^8-30n^6+24n^5+323n^4-504n^3-1110n^2+2760n-1224)/24, n>=3.
G.f.: -x^3*(4*x^8-26*x^7+3*x^6+303*x^5-736*x^4+180*x^3+1595*x^2+351*x+6)/(x-1)^9. - Vaclav Kotesovec, Apr 29 2011
a(n) = A232833(n,4). - R. J. Mathar, Apr 11 2024

Extensions

Corrected a(3) and g.f., Vaclav Kotesovec, Apr 29 2011

A172228 Number of ways to place 5 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 0, 1, 304, 10741, 127960, 870589, 4197456, 16005187, 51439096, 145085447, 369074128, 863338777, 1883786680, 3875953561, 7583888944, 14206566327, 25617069208, 44663199283, 75572017136, 124485188701, 200156902936, 314851577749, 485484612496, 735056106571, 1094434774968
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

Wazir is a (fairy chess) leaper [0,1].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2 (6 x^11 - 26 x^10 - 93 x^9 + 527 x^8 + 490 x^7 - 6710 x^6 + 13630 x^5 - 3954 x^4 - 26364 x^3 - 7452 x^2 - 293 x - 1) / (x - 1)^11, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = (n^10-50n^8+40n^7+995n^6-1560n^5-8890n^4+21080n^3+24264n^2-97440n+59520)/120, n>=4.
For any fixed value of k > 1, a(n) = n^(2k)/k! - 5/2/(k-2)!*n^(2k-2) + ...
G.f.: x^3 * (6*x^11 -26*x^10 -93*x^9 +527*x^8 +490*x^7 -6710*x^6 +13630*x^5 -3954*x^4 -26364*x^3 -7452*x^2 -293*x -1) / (x-1)^11. - Vaclav Kotesovec, Apr 29 2011
a(n) = A232833(n,5). - R. J. Mathar, Apr 11 2024

Extensions

Corrected a(4) and g.f., Vaclav Kotesovec, Apr 29 2011.
More terms from Vincenzo Librandi, May 28 2013

A201237 Number of ways to place 3 non-attacking wazirs on an n X n toroidal board.

Original entry on oeis.org

0, 0, 6, 208, 1300, 4908, 14112, 34112, 73008, 142700, 259908, 447312, 734812, 1160908, 1774200, 2635008, 3817112, 5409612, 7518908, 10270800, 13812708, 18316012, 23978512, 31027008, 39720000, 50350508, 63249012, 78786512, 97377708, 119484300, 145618408
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 28 2011

Keywords

Comments

A wazir is a leaper [0,1].

Crossrefs

Formula

a(n) = n^2*(n^4-15*n^2+62)/6, n>=4.
G.f.: -2*x^3 * (3*x^7 - 15*x^6 + 25*x^5 - 7*x^4 - 17*x^3 - 15*x^2 + 83*x + 3)/(x-1)^7.

A172229 Number of ways to place 3 nonattacking wazirs on a 3 X n board.

Original entry on oeis.org

0, 2, 22, 84, 215, 442, 792, 1292, 1969, 2850, 3962, 5332, 6987, 8954, 11260, 13932, 16997, 20482, 24414, 28820, 33727, 39162, 45152, 51724, 58905, 66722, 75202, 84372, 94259, 104890, 116292, 128492, 141517, 155394, 170150, 185812, 202407, 219962, 238504
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

A wazir is a (fairy chess) leaper [0,1].

Crossrefs

Column w=3 of A371967.

Programs

  • Mathematica
    CoefficientList[Series[x (3 x^3 + 8 x^2 + 14 x + 2) / (x - 1)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = (3*n - 5)*(3*n^2 - 8*n + 8)/2, n>=2.
G.f.: x^2*(3*x^3+8*x^2+14*x+2)/(x-1)^4. - Vaclav Kotesovec, Mar 25 2010

A178409 Number of ways to place 6 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 0, 0, 114, 14650, 368868, 4216498, 30222074, 158918030, 669582340, 2387463550, 7470004954, 21036576578, 54315955588, 130382565930, 294116445082, 628800849110, 1282821452132, 2511317339446, 4739431178170
Offset: 1

Views

Author

Vaclav Kotesovec, May 27 2010

Keywords

Comments

Wazir is a (fairy chess) leaper [0,1].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 2 x^3 (4 x^13 - 17 x^12 + 3 x^11 - 469 x^10 + 4084 x^9 - 10233 x^8 - 3482 x^7 + 66494 x^6 - 125152 x^5 + 35457 x^4 + 265655 x^3 + 93655 x^2 + 6584 x + 57) / (x - 1)^13, {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)

Formula

Explicit formula: a(n) = 1/720 * (n^12 -75*n^10 +60*n^9 +2365*n^8 -3720*n^7 -38085*n^6 +89580*n^5 +292834*n^4 -984960*n^3 -552240*n^2 +4128960*n -3160800), n >= 5.
G.f.: -2*x^4 * (4*x^13 -17*x^12 +3*x^11 -469*x^10 +4084*x^9 -10233*x^8 -3482*x^7 +66494*x^6 -125152*x^5 +35457*x^4 +265655*x^3 +93655*x^2 +6584*x +57)/(x-1)^13.
a(n) = A232833(n,6). - R. J. Mathar, Apr 11 2024

A201507 Number of ways to place 7 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 0, 0, 20, 12798, 763144, 15516804, 170842828, 1264750240, 7084450248, 32251861624, 125030824732, 426265242412, 1308045124808, 3675893768908, 9586626461484, 23445303141400, 54219244028296, 119372323892736, 251614892723068, 510130577706724, 998740710435208
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 02 2011

Keywords

Comments

Wazir is a leaper [0,1].

Crossrefs

Formula

Explicit formula: n^14/5040 - n^12/48 + n^11/60 + 137*n^10/144 - 3*n^9/2 - 1139*n^8/48 + 223*n^7/4 + 59293*n^6/180 - 3191*n^5/3 - 8719*n^4/4 + 51737*n^3/5 + 10914*n^2/7 - 40708*n + 37228, n>=6.
G.f.: 2*x^4*(5*x^16 - 31*x^15 + 193*x^14 - 1683*x^13 + 5093*x^12 + 12431*x^11 - 111239*x^10 + 214181*x^9 + 187845*x^8 - 1518841*x^7 + 2546483*x^6 - 775465*x^5 - 6212549*x^4 - 2702167*x^3 - 286637*x^2 - 6249*x - 10)/(x-1)^15.
a(n) = A232833(n,7). - R. J. Mathar, Apr 11 2024

A232568 Number of non-equivalent binary n X n matrices with three pairwise nonadjacent 1's.

Original entry on oeis.org

0, 6, 40, 210, 681, 1919, 4443, 9481, 18206, 33164, 56570, 92996, 146175, 223565, 330981, 479779, 678508, 943586, 1287036, 1731654, 2293765, 3004011, 3883935, 4973645, 6300906, 7917064, 9857198, 12185816, 14946491, 18218969, 22056585, 26556551, 31783320
Offset: 2

Views

Author

Heinrich Ludwig, Nov 28 2013

Keywords

Comments

Also: Number of non-equivalent ways to place three non-attacking wazirs on an n X n board.
Two matrix elements are considered adjacent if the difference of their row indices is 1 and the column indices are equal, or vice versa (von Neumann neighborhood).
Counted for this sequence are equivalence classes induced by the dihedral group D_4. If equivalent matrices are being destinguished, the number of matrices is A172226(n).

Examples

			There are a(3) = 6 non-equivalent 3 X 3 matrices with three pairwise nonadjacent 1's (and no other 1's):
  [1 0 0]    [1 0 1]    [1 0 0]    [1 0 1]   [1 0 1]   [0 1 0]
  |0 1 0|    |0 0 0|    |0 0 1|    |0 0 0|   |0 1 0|   |1 0 1|
  [0 0 1]    [1 0 0]    [0 1 0]    [0 1 0]   [0 0 0]   [0 0 0]
		

Crossrefs

Programs

  • Maple
    A232568:=n->(n^6-15*n^4+28*n^3+29*n^2-76*n-15-((n+1) mod 2)*(8*n^3-21*n^2+40*n-63))/48; seq(A232568(n), n=2..50); # Wesley Ivan Hurt, Dec 06 2013
  • Mathematica
    Table[(n^6-15n^4+28n^3+29n^2-76n-15-Mod[n+1,2](8n^3-21n^2+40n-63))/48, {n, 2, 50}] (* Wesley Ivan Hurt, Dec 06 2013 *)

Formula

a(n) = (n^6 - 15*n^4 + 20*n^3 + 50*n^2 - 116*n + 48)/48 if n is even; a(n) = (n^6 - 15*n^4 + 28*n^3 + 29*n^2 - 76*n - 15)/48 if n is odd.
G.f.: x^3*(x^9-4*x^8+x^7+12*x^6+9*x^5-70*x^4-77*x^3-84*x^2-22*x-6) / ((x-1)^7*(x+1)^4). - Colin Barker, Dec 06 2013
a(n) = (n^6 - 15n^4 + 28n^3 + 29n^2 - 76n - 15 - ((n+1) mod 2) * (8n^3 - 21n^2 + 40n - 63))/48. - Wesley Ivan Hurt, Dec 06 2013

A201508 Number of ways to place 8 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 0, 0, 2, 7157, 1143638, 44031035, 771464278, 8219304992, 62114308624, 364798895986, 1765597908290, 7329246973785, 26849172347850, 88645482921449, 268042562131202, 751635857876290, 1974215715426992, 4896315981217168, 11542835604897814, 26008912447737323
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 02 2011

Keywords

Comments

Wazir is a leaper [0,1].

Crossrefs

Formula

Explicit formula: n^16/40320 - n^14/288 + n^13/360 + 623*n^12/2880 - 41*n^11/120 - 5521*n^10/720 + 649*n^9/36 + 941767*n^8/5760 - 12485*n^7/24 - 577177*n^6/288 + 3102289*n^5/360 + 12378183*n^4/1120 - 1545219*n^3/20 + 1588751*n^2/120 + 581605*n/2 - 308806, n>=7.
G.f.: -x^4*(12*x^19 - 122*x^18 + 1130*x^17 - 6776*x^16 + 11180*x^15 + 33894*x^14 + 82772*x^13 - 1938093*x^12 + 7575029*x^11 - 10487057*x^10 - 11993287*x^9 + 70715064*x^8 - 109013258*x^7 + 41757444*x^6 + 331980470*x^5 + 173609451*x^4 + 25561181*x^3 + 1022241*x^2 + 7123*x + 2)/(x-1)^17.
a(n) = A232833(n,8). - R. J. Mathar, Apr 11 2024
Showing 1-10 of 11 results. Next