A006506
Number of n X n binary matrices with no 2 adjacent 1's, or number of configurations of non-attacking princes on an n X n board, where a "prince" attacks the four adjacent (non-diagonal) squares. Also number of independent vertex sets in an n X n grid.
Original entry on oeis.org
1, 2, 7, 63, 1234, 55447, 5598861, 1280128950, 660647962955, 770548397261707, 2030049051145980050, 12083401651433651945979, 162481813349792588536582997, 4935961285224791538367780371090, 338752110195939290445247645371206783, 52521741712869136440040654451875316861275
Offset: 0
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jin-Guo Liu, Table of n, a(n) for n = 0..39 (terms 1..33 from Robert Gerbicz, 34..35 from P. Butera and M. Pernici, 37..38 from Casey Mills Davis)
- P. Butera and M. Pernici, Sums of permanental minors using Grassmann algebra, arXiv preprint arXiv:1406.5337 [hep-lat], 2014.
- Casey Mills Davis, C++ program used to generate a(n) for n = 36..37
- Steven R. Finch, Hard Square Entropy Constant [Broken link]
- Steven R. Finch, Hard Square Entropy Constant [From the Wayback machine]
- Xuanzhao Gao, Xiaofeng Li, and Jinguo Liu, Programming guide for solving constraint satisfaction problems with tensor networks, arXiv:2501.00227 [physics.comp-ph], 2024. See p. 24.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p.372.
- Jin-Guo Liu, Xun Gao, Madelyn Cain, Mikhail D. Lukin and Sheng-Tao Wang, Computing solution space properties of combinatorial optimization problems via generic tensor networks, arXiv:2205.03718 [cond-mat.stat-mech], 2022. Terms 38..39.
- I. Mezo, Periodicity of the Last Digits of Some Combinatorial Sequences, J. Int. Seq. 17 (2014) #14.1.1.
- B. D. Stosic, T. Stosic, I. P. Fittipaldi and J. J. P. Veerman, Residual entropy of the square Ising antiferromagnet in the maximum critical field: the Fibonacci matrix, Journal of Physics A: Mathematical and General, Volume 30, Number 10, 1997, pp. L331-L337.
- Peter Tittmann, Enumeration in Graphs
- Eric Weisstein's World of Mathematics, (0,1)-Matrix
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Hard Square Entropy Constant
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for sequences related to binary matrices
Table of values for n x m matrices:
A089934.
Cf.
A232833 for refinement by number of 1's.
-
A006506 := proc(N) local i,j,p,q; p := 1+x11;
if n=0 then return 1 fi;
for i from 2 to N do
q := p-select(has,p,x||(i-1)||1);
p := p+expand(q*x||i||1)
od;
for j from 2 to N do
q := p-select(has,p,x1||(j-1));
p := subs(x1||(j-1)=1,p)+expand(q*x1||j);
for i from 2 to N do
q := p-select(has,p,{x||(i-1)||j,x||i||(j-1)});
p := subs(x||i||(j-1)=1,p)+expand(q*x||i||j);
od
od;
map(icontent,p)
end:
seq(A006506(n), n=0..15);
-
a[n_] := a[n] = (p = 1 + x[1, 1]; Do[q = p - Select[p, ! FreeQ[#, x[i-1, 1]] &]; p = p + Expand[q*x[i, 1]], {i, 2, n}]; Do[q = p - Select[p, ! FreeQ[#, x[1, j-1]] &]; p = (p /. x[i, j-1] :> 1) + Expand[q*x[1, j]]; Do[q = p - Select[ p, ! FreeQ[#, x[i-1, j]] || ! FreeQ[#, x[i, j-1]] &]; p = (p /. x[i, j-1] :> 1) + Expand[q*x[i, j]], {i, 2, n}], {j, 2, n}]; p /. x[, ] -> 1); a /@ Range[14] (* Jean-François Alcover, May 25 2011, after Maple prog. *)
Table[With[{g = GridGraph[{n, n}]}, Count[Subsets[Range[n^2], Length @ First @ FindIndependentVertexSet[g]], ?(IndependentVertexSetQ[g, #] &)]], {n, 5}] (* _Eric W. Weisstein, May 28 2017 *)
-
a(n)=L=fibonacci(n+2);p=v=vector(L,i,1);c=0; for(i=0,2^n-1,j=i;while(j&&j%4<3,j\=2);if(j%4<3,p[c++]=i)); for(i=2,n,w=vector(L,j,0); for(j=1,L, for(k=1,L,if(bitand(p[j],p[k])==0,w[j]+=v[k])));v=w); sum(i=1,L,v[i]) \\ Robert Gerbicz, Jun 17 2011
Maple program updated and sequence extended by
Robert Israel, Jun 16 2011
A172225
Number of ways to place 2 nonattacking wazirs on an n X n board.
Original entry on oeis.org
0, 2, 24, 96, 260, 570, 1092, 1904, 3096, 4770, 7040, 10032, 13884, 18746, 24780, 32160, 41072, 51714, 64296, 79040, 96180, 115962, 138644, 164496, 193800, 226850, 263952, 305424, 351596, 402810, 459420, 521792, 590304
Offset: 1
- Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p. 829.
-
I:=[0, 2, 24, 96, 260]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
-
[n*(n-1)*(n^2+n-4)/2: n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
-
Table[n (n - 1) (n^2 + n - 4) / 2, {n, 40}] (* Vincenzo Librandi, Apr 30 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{0,2,24,96,260},40] (* Harvey P. Dale, Jun 04 2023 *)
A201511
Number of ways to place n nonattacking wazirs on an n X n board.
Original entry on oeis.org
1, 1, 2, 22, 405, 10741, 368868, 15516804, 771464278, 44218721793, 2868879752822, 207739939478618, 16602826428818482, 1451305771147909684, 137715836041691050398, 14096224186664736126206, 1547966111897855935957132, 181519663430661533452513680, 22636566614411901986006002896
Offset: 0
A172226
Number of ways to place 3 nonattacking wazirs on an n X n board.
Original entry on oeis.org
0, 0, 22, 276, 1474, 5248, 14690, 35012, 74326, 144544, 262398, 450580, 739002, 1166176, 1780714, 2642948, 3826670, 5420992, 7532326, 10286484, 13830898, 18336960, 24002482, 31054276, 39750854, 50385248, 63287950
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- V. Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Eric Weisstein's World of Mathematics, Grid Graph
- Wikipedia, Wazir (chess)
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
I:=[0, 0, 22, 276, 1474, 5248, 14690, 35012]; [n le 8 select I[n] else 7*Self(n-1)-21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6)+Self(n-7): n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
-
[0] cat [(n-2)*(n^5+2*n^4-11*n^3-10*n^2+42*n-12)/6: n in [2..30]]; // Vincenzo Librandi, Apr 30 2013
-
A172226:=n->`if`(n=1, 0, (n-2)*(n^5 + 2*n^4 - 11*n^3 - 10*n^2 + 42*n - 12)/6); seq(A172226(n), n=1..60); # Wesley Ivan Hurt, Feb 06 2014
-
CoefficientList[Series[2 x^2 (x^5 - 9 x^4 + 22 x^3 - 2 x^2 - 61 x - 11) / (x-1)^7, {x, 0, 60}], x] (* Vincenzo Librandi, Apr 30 2013 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,22,276,1474,5248,14690,35012},30] (* Harvey P. Dale, Apr 08 2022 *)
A172227
Number of ways to place 4 nonattacking wazirs on an n X n board.
Original entry on oeis.org
0, 0, 6, 405, 5024, 31320, 133544, 446421, 1258590, 3126724, 7042930, 14669709, 28658436, 53069000, 93909924, 159819965, 262913874, 419816676, 652912510, 991835749, 1475233800, 2152832664, 3087838016, 4359706245, 6067321574, 8332617060, 11304678954
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- J. Brazeal Slides on a Chessboard, Math Horizons, Vol. 27, pp. 24-27, April 2020.
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Eric Weisstein's World of Mathematics, Grid Graph
- Wikipedia, Fairy chess piece
- Wikipedia, Wazir (chess)
-
CoefficientList[Series[- x^2 (4 x^8 - 26 x^7 + 3 x^6 + 303 x^5 - 736 x^4 + 180 x^3 + 1595 x^2 + 351 x + 6) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
A172228
Number of ways to place 5 nonattacking wazirs on an n X n board.
Original entry on oeis.org
0, 0, 1, 304, 10741, 127960, 870589, 4197456, 16005187, 51439096, 145085447, 369074128, 863338777, 1883786680, 3875953561, 7583888944, 14206566327, 25617069208, 44663199283, 75572017136, 124485188701, 200156902936, 314851577749, 485484612496, 735056106571, 1094434774968
Offset: 1
-
CoefficientList[Series[x^2 (6 x^11 - 26 x^10 - 93 x^9 + 527 x^8 + 490 x^7 - 6710 x^6 + 13630 x^5 - 3954 x^4 - 26364 x^3 - 7452 x^2 - 293 x - 1) / (x - 1)^11, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
A178409
Number of ways to place 6 nonattacking wazirs on an n X n board.
Original entry on oeis.org
0, 0, 0, 114, 14650, 368868, 4216498, 30222074, 158918030, 669582340, 2387463550, 7470004954, 21036576578, 54315955588, 130382565930, 294116445082, 628800849110, 1282821452132, 2511317339446, 4739431178170
Offset: 1
-
CoefficientList[Series[- 2 x^3 (4 x^13 - 17 x^12 + 3 x^11 - 469 x^10 + 4084 x^9 - 10233 x^8 - 3482 x^7 + 66494 x^6 - 125152 x^5 + 35457 x^4 + 265655 x^3 + 93655 x^2 + 6584 x + 57) / (x - 1)^13, {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
A371967
Irregular triangle T(r,w) read by rows: number of ways of placing w non-attacking wazirs on a 3 X r board.
Original entry on oeis.org
1, 1, 3, 1, 1, 6, 8, 2, 1, 9, 24, 22, 6, 1, 1, 12, 49, 84, 61, 18, 2, 1, 15, 83, 215, 276, 174, 53, 9, 1, 1, 18, 126, 442, 840, 880, 504, 158, 28, 2, 1, 21, 178, 792, 2023, 3063, 2763, 1478, 472, 93, 12, 1, 1, 24, 239, 1292, 4176, 8406, 10692, 8604, 4374, 1416, 297, 38, 2, 1, 27, 309
Offset: 0
The triangle starts with r>=0 rows and w>=0 wazirs as
1 ;
1 3 1 ;
1 6 8 2 ;
1 9 24 22 6 1 ;
1 12 49 84 61 18 2 ;
1 15 83 215 276 174 53 9 1 ;
1 18 126 442 840 880 504 158 28 2 ;
1 21 178 792 2023 3063 2763 1478 472 93 12 1 ;
1 24 239 1292 4176 8406 10692 8604 4374 1416 297 38 2 ;
1 27 309 1969 7731 19591 32716 36257 26674 13035 4264 945 142 15 1 ;
...
-
b:= proc(n, l) option remember; `if`(n=0, 1,
add(`if`(Bits[And](j, l)>0, 0, expand(b(n-1, j)*
x^add(i, i=Bits[Split](j)))), j=[0, 1, 2, 4, 5]))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..10); # Alois P. Heinz, Apr 14 2024
-
b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[If[BitAnd[j, l] > 0, 0, Expand[b[n - 1, j]*x^DigitCount[j, 2, 1]]], {j, {0, 1, 2, 4, 5}}]];
T[n_] := CoefficientList[b[n, 0], x];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jun 05 2024, after Alois P. Heinz *)
A232569
Triangle T(n, k) = number of non-equivalent (mod D_4) binary n X n matrices with k pairwise not adjacent 1's; k=0,...,n^2.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 0, 1, 3, 6, 6, 3, 1, 0, 0, 0, 0, 1, 3, 17, 40, 62, 45, 20, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 43, 210, 683, 1425, 1936, 1696, 977, 366, 101, 21, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 84, 681, 4015, 16149, 46472, 95838, 143657
Offset: 1
Triangle begins:
1,1;
1,1,1,0,0;
1,3,6,6,3,1,0,0,0,0;
1,3,17,40,62,45,20,4,1,0,0,0,0,0,0,0,0;
1,6,43,210,683,1425,1936,1696,977,366,101,21,5,1,0,0,0,0,0,0,0,0,0,0,0,0;
...
There are T(3, 2) = 6 non-equivalent binary 3 X 3 matrices with 2 not adjacent 1's (and no other 1's):
[1 0 0] [0 1 0] [1 0 0] [0 1 0] [1 0 1] [1 0 0]
|0 0 0| |0 0 0| |0 1 0| |1 0 0| |0 0 0| |0 0 1|
[0 0 1] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
A201507
Number of ways to place 7 nonattacking wazirs on an n X n board.
Original entry on oeis.org
0, 0, 0, 20, 12798, 763144, 15516804, 170842828, 1264750240, 7084450248, 32251861624, 125030824732, 426265242412, 1308045124808, 3675893768908, 9586626461484, 23445303141400, 54219244028296, 119372323892736, 251614892723068, 510130577706724, 998740710435208
Offset: 1
Showing 1-10 of 12 results.
Comments