cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A067143 Numbers n such that phi(n+1) = 3*phi(n).

Original entry on oeis.org

6, 12, 18, 36, 72, 90, 96, 108, 162, 192, 432, 486, 576, 702, 768, 792, 924, 1152, 1296, 1458, 2592, 2916, 3456, 3888, 4698, 5550, 6696, 7998, 8700, 10368, 10590, 11802, 12288, 16470, 17496, 18432, 33250, 39366, 52488, 56790, 79248, 124356
Offset: 1

Views

Author

Benoit Cloitre, Feb 19 2002

Keywords

Crossrefs

Programs

Extensions

More terms from Dean Hickerson, Feb 20 2002

A266276 a(n) is the smallest number k such that phi(k) = n*phi(k-1).

Original entry on oeis.org

2, 3, 7, 1261, 11242771
Offset: 1

Views

Author

Jaroslav Krizek, Jan 26 2016

Keywords

Comments

a(n) >= A266269(n). - Max Alekseyev, Jan 26 2025

Examples

			a(3) = 7 because 7 is the smallest number k such that phi(k) = n*phi(k-1); phi(7) = 6 =3*phi(6) = 3*2.
		

Crossrefs

Sequences of numbers n such that phi(n) = k*phi(n-1): {A001274 + 1} for k=1; A171271 = {A050472 + 1} for k=2; A266268 = {A067143 + 1} for k=3; A268126 = {A172314 + 1} for k=4; {A201253 + 1} for k=5.

Programs

  • Magma
    a:=func; [a(n):n in[1..5]];
    
  • PARI
    a(n) = my(k=2, epk=1, enk); while ((enk=eulerphi(k)) != n*epk, epk = enk; k++); k; \\ Michel Marcus, Feb 20 2020

A201253 Numbers k such that phi(k+1) = 5*phi(k).

Original entry on oeis.org

11242770, 18673200, 77805000, 117138840, 122649450, 278023200, 393513120, 881879460, 2177410830, 2364390210, 3440848320, 3919303080, 5151045900, 5836032510, 7284273360, 8029787220, 8505803460, 12998545560, 13081794180, 13759304790, 14031484740, 14104654410
Offset: 1

Views

Author

Ray Chandler, Nov 28 2011

Keywords

Crossrefs

Programs

  • PARI
    isok(k) = eulerphi(k+1) == 5*eulerphi(k); \\ Michel Marcus, Aug 10 2025

Extensions

a(9)-a(22) from Donovan Johnson, Nov 29 2011

A268126 Numbers n such that phi(n) = 4*phi(n-1).

Original entry on oeis.org

1261, 13651, 17557, 18721, 24511, 42121, 113611, 244531, 266071, 712081, 749911, 795691, 992251, 1080721, 1286731, 1458271, 1849471, 2271061, 2457691, 3295381, 3370771, 3414841, 3714751, 4061971, 4736491, 5314051, 5827081, 6566911, 6935083, 7303981, 7864081
Offset: 1

Views

Author

Jaroslav Krizek, Jan 26 2016

Keywords

Comments

See A266276(n) = the smallest numbers k such that phi(k) = n * phi(k-1) for n >=1: 2, 3, 7, 1261, 11242771, ...

Examples

			1261 is in the sequence because phi(1261) = 1152 = 4*phi(1260) = 4*288.
		

Crossrefs

Cf. A000010, A171271 (numbers n such that phi(n) = 2*phi(n-1)), A266268 (numbers n such that phi(n) = 3*phi(n-1)), A266276.
Cf. A256937.

Programs

  • Magma
    [n: n in [2..10^7] | EulerPhi(n) eq 4*EulerPhi(n-1)]
    
  • Mathematica
    Select[Range@10000000, EulerPhi@# == 4 EulerPhi[# - 1] &] (* Vincenzo Librandi, Jan 27 2016 *)
  • PARI
    isok(n) = (eulerphi(n) == 4*eulerphi(n-1)); \\ Michel Marcus, Jan 27 2016

Formula

a(n) = A172314(n) + 1. - Michel Marcus, Jan 27 2016
Showing 1-4 of 4 results.