cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A172314 Numbers k such that phi(k+1) = 4*phi(k).

Original entry on oeis.org

1260, 13650, 17556, 18720, 24510, 42120, 113610, 244530, 266070, 712080, 749910, 795690, 992250, 1080720, 1286730, 1458270, 1849470, 2271060, 2457690, 3295380, 3370770, 3414840, 3714750, 4061970, 4736490, 5314050, 5827080, 6566910, 6935082, 7303980, 7864080
Offset: 1

Views

Author

Michel Lagneau, Jan 31 2010

Keywords

Examples

			phi(1260) = 288. phi(1261) = 1152. 4*phi(1260) = phi(1261).
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 51, p. 19, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems Number Theory, Sect. B36.

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | EulerPhi(n+1) eq 4*EulerPhi(n)]; // Vincenzo Librandi, Jan 27 2016
  • Maple
    with(numtheory): for n from 1 to 4000000 do; if 4*phi(n) = phi(n+1) then print(n); else fi ; od;
  • Mathematica
    #[[1,1]]&/@Select[Partition[Table[{n,EulerPhi[n]},{n,4000000}],2,1], 4#[[1,2]]==#[[2,2]]&] (* Harvey P. Dale, Oct 11 2011 *)
    Select[Range@1000000, EulerPhi@# 4 == EulerPhi[# + 1] &] (* Vincenzo Librandi, Jan 27 2016 *)

Extensions

References separated by R. J. Mathar, Feb 19 2010

A266276 a(n) is the smallest number k such that phi(k) = n*phi(k-1).

Original entry on oeis.org

2, 3, 7, 1261, 11242771
Offset: 1

Views

Author

Jaroslav Krizek, Jan 26 2016

Keywords

Comments

a(n) >= A266269(n). - Max Alekseyev, Jan 26 2025

Examples

			a(3) = 7 because 7 is the smallest number k such that phi(k) = n*phi(k-1); phi(7) = 6 =3*phi(6) = 3*2.
		

Crossrefs

Sequences of numbers n such that phi(n) = k*phi(n-1): {A001274 + 1} for k=1; A171271 = {A050472 + 1} for k=2; A266268 = {A067143 + 1} for k=3; A268126 = {A172314 + 1} for k=4; {A201253 + 1} for k=5.

Programs

  • Magma
    a:=func; [a(n):n in[1..5]];
    
  • PARI
    a(n) = my(k=2, epk=1, enk); while ((enk=eulerphi(k)) != n*epk, epk = enk; k++); k; \\ Michel Marcus, Feb 20 2020

A266268 Numbers n such that phi(n) = 3*phi(n-1).

Original entry on oeis.org

7, 13, 19, 37, 73, 91, 97, 109, 163, 193, 433, 487, 577, 703, 769, 793, 925, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 4699, 5551, 6697, 7999, 8701, 10369, 10591, 11803, 12289, 16471, 17497, 18433, 33251, 39367, 52489, 56791, 79249, 124357, 127927, 137899
Offset: 1

Views

Author

Jaroslav Krizek, Dec 26 2015

Keywords

Comments

Prime terms are in A058383.
See A266276(n) = the smallest numbers k such that phi(k) = n * phi(k-1) for n >=1: 2, 3, 7, 1261, 11242771, ...
Number of terms < 10^k: 1, 7, 17, 29, 41, 86, 205, 446, 1001, 2295, ..., . - Robert G. Wilson v, Jan 24 2016
All terms are == +-1 (mod 6) but mostly 1 (> 95%). - Robert G. Wilson v, Jan 24 2016

Examples

			19 is in the sequence because phi(19) = 18 = 3*phi(18) = 3*6.
		

Crossrefs

Cf. A000010, A058383, A171271 (numbers n such that phi(n) = 2*phi(n-1)), A266276.

Programs

  • Magma
    [n: n in [2..2*10^5] | EulerPhi(n) eq 3*EulerPhi(n-1)]; // Vincenzo Librandi, Dec 26 2015
    
  • Mathematica
    Select[Range[5000], EulerPhi[ # ]==3*EulerPhi[ #-1]&] (* G. C. Greubel, Dec 26 2015 *)
  • PARI
    isok(n) = eulerphi(n) == 3*eulerphi(n-1); \\ Michel Marcus, Dec 27 2015
    
  • PARI
    lista(nn) = for(n=1, nn, if(eulerphi(n) == 3*eulerphi(n-1), print1(n, ", "))); \\ Altug Alkan, Jan 24 2016

Formula

a(n) = A067143(n) + 1.

A201253 Numbers k such that phi(k+1) = 5*phi(k).

Original entry on oeis.org

11242770, 18673200, 77805000, 117138840, 122649450, 278023200, 393513120, 881879460, 2177410830, 2364390210, 3440848320, 3919303080, 5151045900, 5836032510, 7284273360, 8029787220, 8505803460, 12998545560, 13081794180, 13759304790, 14031484740, 14104654410
Offset: 1

Views

Author

Ray Chandler, Nov 28 2011

Keywords

Crossrefs

Programs

  • PARI
    isok(k) = eulerphi(k+1) == 5*eulerphi(k); \\ Michel Marcus, Aug 10 2025

Extensions

a(9)-a(22) from Donovan Johnson, Nov 29 2011
Showing 1-4 of 4 results.