cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173557 a(n) = Product_{primes p dividing n} (p-1).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 2, 12, 6, 8, 1, 16, 2, 18, 4, 12, 10, 22, 2, 4, 12, 2, 6, 28, 8, 30, 1, 20, 16, 24, 2, 36, 18, 24, 4, 40, 12, 42, 10, 8, 22, 46, 2, 6, 4, 32, 12, 52, 2, 40, 6, 36, 28, 58, 8, 60, 30, 12, 1, 48, 20, 66, 16, 44, 24, 70, 2, 72, 36
Offset: 1

Views

Author

Keywords

Comments

This is A023900 without the signs. - T. D. Noe, Jul 31 2013
Numerator of c_n = Product_{odd p| n} (p-1)/(p-2). Denominator is A305444. The initial values c_1, c_2, ... are 1, 1, 2, 1, 4/3, 2, 6/5, 1, 2, 4/3, 10/9, 2, 12/11, 6/5, 8/3, 1, 16/15, ... [Yamasaki and Yamasaki]. - N. J. A. Sloane, Jan 19 2020
Kim et al. (2019) named this function the absolute Möbius divisor function. - Amiram Eldar, Apr 08 2020

Examples

			300 = 3*5^2*2^2 => a(300) = (3-1)*(2-1)*(5-1) = 8.
		

Crossrefs

Programs

  • Haskell
    a173557 1 = 1
    a173557 n = product $ map (subtract 1) $ a027748_row n
    -- Reinhard Zumkeller, Jun 01 2015
    
  • Magma
    [EulerPhi(n)/(&+[(Floor(k^n/n)-Floor((k^n-1)/n)): k in [1..n]]): n in [1..100]]; // Vincenzo Librandi, Jan 20 2020
    
  • Maple
    A173557 := proc(n) local dvs; dvs := numtheory[factorset](n) ; mul(d-1,d=dvs) ; end proc: # R. J. Mathar, Feb 02 2011
    # second Maple program:
    a:= n-> mul(i[1]-1, i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Aug 27 2018
  • Mathematica
    a[n_] := Module[{fac = FactorInteger[n]}, If[n==1, 1, Product[fac[[i, 1]]-1, {i, Length[fac]}]]]; Table[a[n], {n, 100}]
  • PARI
    a(n) = my(f=factor(n)[,1]); prod(k=1, #f, f[k]-1); \\ Michel Marcus, Oct 31 2017
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + p*X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Jun 18 2020
    
  • PARI
    apply( {A173557(n)=vecprod([p-1|p<-factor(n)[,1]])}, [1..77]) \\ M. F. Hasler, Aug 14 2021
    
  • Python
    from math import prod
    from sympy import primefactors
    def A173557(n): return prod(p-1 for p in primefactors(n)) # Chai Wah Wu, Sep 08 2023
  • Scheme
    ;; With memoization-macro definec.
    (definec (A173557 n) (if (= 1 n) 1 (* (- (A020639 n) 1) (A173557 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
    

Formula

a(n) = A003958(n) iff n is squarefree. a(n) = |A023900(n)|.
Multiplicative with a(p^e) = p-1, e >= 1. - R. J. Mathar, Mar 30 2011
a(n) = phi(rad(n)) = A000010(A007947(n)). - Enrique Pérez Herrero, May 30 2012
a(n) = A000010(n) / A003557(n). - Jason Kimberley, Dec 09 2012
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 - 2p^(-s) + p^(1-s)). The Dirichlet inverse is multiplicative with b(p^e) = (1 - p) * (2 - p)^(e - 1) = Sum_k A118800(e, k) * p^k. - Álvar Ibeas, Nov 24 2017
a(1) = 1; for n > 1, a(n) = (A020639(n)-1) * a(A028234(n)). - Antti Karttunen, Nov 28 2017
From Vaclav Kotesovec, Jun 18 2020: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(2*s-2) * Product_{p prime} (1 - 2/(p + p^s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A307868 = Product_{p prime} (1 - 2/(p*(p+1))) = 0.471680613612997868... (End)
a(n) = (-1)^A001221(n)*A023900(n). - M. F. Hasler, Aug 14 2021

Extensions

Definition corrected by M. F. Hasler, Aug 14 2021
Incorrect formula removed by Pontus von Brömssen, Aug 15 2021