cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174687 Central coefficients T(2n,n) of the Catalan triangle A033184.

Original entry on oeis.org

1, 2, 9, 48, 275, 1638, 9996, 62016, 389367, 2466750, 15737865, 100975680, 650872404, 4211628008, 27341497800, 177996090624, 1161588834303, 7596549816030, 49772989810635, 326658445806000, 2147042307851595, 14130873926790390, 93115841412899760
Offset: 0

Views

Author

Paul Barry, Mar 27 2010

Keywords

Comments

A033184 is the Riordan array (c(x), x*c(x)), c(x) the g.f. of A000108.
Number of standard Young tableaux of shape [2n, n]. Also the number of binary words with 2n 1's and n 0's such that for every prefix the number of 1's is >= the number of 0's. The a(2) = 9 words are: 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100. - Alois P. Heinz, Aug 15 2012
Number of lattice paths from (0,0) to (2n,n) not above y=x. - Ran Pan, Apr 08 2015

Crossrefs

Column k=2 of A214776.

Programs

  • Magma
    [(n+1)*Binomial(3*n,n)/(2*n+1): n in [0..25]]; // Vincenzo Librandi, Apr 08 2015
    
  • Maple
    a:= n-> binomial(3*n,n)*(n+1)/(2*n+1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 15 2012
  • Mathematica
    Table[Binomial[3n,n](n+1)/(2n+1), {n, 0, 25}] (* Vincenzo Librandi, Apr 08 2015 *)
  • PARI
    a(n) = (n+1)*binomial(3*n,n)/(2*n+1); \\ Michel Marcus, Nov 12 2022
  • SageMath
    [(n+1)*binomial(3*n,n)/(2*n+1) for n in range(31)] # G. C. Greubel, Nov 09 2022
    

Formula

a(n) = (n+1)*C(3*n, n)/(2n+1) = (n+1)*[x^(n+1)]( Rev(x/c(x)) ) = (n+1)*A001764(n), c(x) the g.f. of A000108.
G.f.: A(x) = sin(arcsin((3^(3/2)*sqrt(x))/2)/3)/(sqrt(3)*sqrt(x)) + cos(arcsin((3^(3/2)* sqrt(x))/2)/3)/(2*sqrt(1-(27*x)/4)). - Vladimir Kruchinin, May 25 2012
2*n*(2*n+1)*a(n) = 3*(13*n^2 -10*n +1)*a(n-1) -9*(3*n-4)*(3*n-5)*a(n-2). - R. J. Mathar, Nov 24 2012
a(n) = [x^n] ((1 - sqrt(1 - 4*x))/(2*x))^(n+1). - Ilya Gutkovskiy, Nov 01 2017
a(n) ~ 3^(3*n+1/2) / (4^(n+1) * sqrt(Pi*n)). - Amiram Eldar, Aug 29 2025