cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A010791 a(n) = n!*(n+2)!/2.

Original entry on oeis.org

1, 3, 24, 360, 8640, 302400, 14515200, 914457600, 73156608000, 7242504192000, 869100503040000, 124281371934720000, 20879270485032960000, 4071457744581427200000, 912006534786239692800000, 232561666370491121664000000, 66977759914701443039232000000
Offset: 0

Views

Author

Keywords

Comments

Also determinant of n X n matrix with m(i,j) = i^2 if i=j, otherwise 1. - Robert G. Wilson v, Jan 28 2002
Partial products of positive values of A005563. - Jonathan Vos Post, Oct 21 2008
This sequence has been shown to contain infinitely many squares. From the Hong and Liu abstract: Recently Cilleruelo proved that the product Product_{k=1..n} (k^2 + 1) is a square only for n = 3 which confirms a conjecture of Amdeberhan, Medina and Moll. In this paper, we show that the sequence Product_{k=2..n} (k^2 - 1) contains infinitely many squares. Furthermore, we determine all squares in this sequence. We also give a formula for the p-adic valuation of the terms in this sequence. - Jonathan Vos Post, Oct 21 2008
Equals (-1)^n * (1, 1, 3, 24, 360, ...) dot (1, -4, 9, -16, 25, ...). E.g., a(4) = (1, 1, 3, 24, 360) dot (1, -4, 9, -16, 25) = 1 - 4 + 27 - 384 + 9000 = 8640. - Gary W. Adamson, Apr 21 2009

Crossrefs

Programs

Formula

From Amiram Eldar, Sep 27 2022: (Start)
a(n) = A175430(n+1)/2.
Sum_{n>=0} 1/a(n) = 2*BesselI(2,2) = 2*A229020.
Sum_{n>=0} (-1)^n/a(n) = 2*BesselJ(2,2). (End)
a(n) = 1/([x^n] hypergeom([], [3], x)). - Peter Luschny, Sep 13 2024

A179442 a(n) = ((n-1)! * (n+1)!) / n.

Original entry on oeis.org

2, 3, 16, 180, 3456, 100800, 4147200, 228614400, 16257024000, 1448500838400, 158018273280000, 20713561989120000, 3212195459235840000, 581636820654489600000, 121600871304831959040000
Offset: 1

Views

Author

Jaroslav Krizek, Jul 14 2010

Keywords

Examples

			a(5) = ((5-1)! * (5+1)!) / 5 = (4! * 6!) / 5 = (24 * 720) / 5 = 17280 / 5 = 3456.
a(5) = ((5 -1)!^2) * (5+1) = 24^2 * 6 = 3456.
		

Crossrefs

Programs

Formula

a(n) = Product_{k=1..n} (k * A020725(k)) / (n^2) = Product_{k=1..n} (k * (k+1)) / (n^2).
a(n) = A175430(n) / n = A001044(n-1) * (n+1) = ((n -1)^2)! * (n+1).
G.f.: 1 + G(0), where G(k)= 1 + x*(k+1)/(1 - (k+2)/(k+2 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=1} 1/a(n) = BesselI(2,2) + BesselI(3,2) = A229020 + A261879.
Sum_{n>=1} (-1)^(n+1)/a(n) = BesselJ(2,2) - BesselJ(3,2). (End)

A179870 a(n) = ((n-1)! * (n+1)!) ^ 2.

Original entry on oeis.org

4, 36, 2304, 518400, 298598400, 365783040000, 842764124160000, 3344930808791040000, 21407557176262656000000, 209815467884550291456000000, 3021342737537524196966400000000, 61783437639904832303765913600000000
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010

Keywords

Programs

Formula

a(n) = A175430(n) ^ 2 = ((Product_(k=1,2,...,n) k*A020725(k)) / n) ^ 2 = ((Product_(k=1,2,...,n) k*(k+1)) / n) ^ 2.

A370418 Triangle read by rows. T(n, k) = (n - k)! * (n + k)!.

Original entry on oeis.org

1, 1, 2, 4, 6, 24, 36, 48, 120, 720, 576, 720, 1440, 5040, 40320, 14400, 17280, 30240, 80640, 362880, 3628800, 518400, 604800, 967680, 2177280, 7257600, 39916800, 479001600, 25401600, 29030400, 43545600, 87091200, 239500800, 958003200, 6227020800, 87178291200
Offset: 0

Views

Author

Peter Luschny, Feb 27 2024

Keywords

Examples

			Triangle starts:
[0]      1;
[1]      1,      2;
[2]      4,      6,     24;
[3]     36,     48,    120,     720;
[4]    576,    720,   1440,    5040,   40320;
[5]  14400,  17280,  30240,   80640,  362880,  3628800;
[6] 518400, 604800, 967680, 2177280, 7257600, 39916800, 479001600;
		

Crossrefs

Cf. A010050 (main diagonal), A009445 (subdiagonal), A001044 (column 0), A175430 (column 1), A024420 (bisection is alternating sum).

Programs

  • Maple
    T := (n, k) -> (n - k)! * (n + k)!:
    seq(seq(T(n, k), k = 0..n), n = 0..7);
  • Mathematica
    Table[(n - k)!*(n + k)!, {n, 0, 7}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 05 2024 *)

Formula

Sum_{k=0..n} (-1)^k*T(n, k) = n!^2 / 2 + (-1)^n * (2*n + 2)! / (2*n + 2)^2.
Showing 1-4 of 4 results.