A079484
a(n) = (2n-1)!! * (2n+1)!!, where the double factorial is A006882.
Original entry on oeis.org
1, 3, 45, 1575, 99225, 9823275, 1404728325, 273922023375, 69850115960625, 22561587455281875, 9002073394657468125, 4348001449619557104375, 2500100833531245335015625, 1687568062633590601135546875, 1321365793042101440689133203125
Offset: 0
G.f. = 1 + 3*x + 45*x^2 + 1575*x^3 + 99225*x^4 + 9823275*x^5 + ...
M(5) =
[1, 2, 3, 1, 5]
[1, 2, 2, 4, 5]
[1, 3, 3, 4, 5]
[4, 2, 3, 4, 5]
[1, 2, 3, 4, 5].
Integral_{x=0..oo} x^3*BesselK(1, sqrt(x)) = 1575*Pi. - _Olivier Gérard_, May 20 2009
- Miklós Bóna, A walk through combinatorics, World Scientific, 2006.
- Alois P. Heinz, Table of n, a(n) for n = 0..224
- Cyril Banderier, Markus Kuba, and Michael Wallner, Analytic Combinatorics of Composition schemes and phase transitions with mixed Poisson distributions, arXiv:2103.03751 [math.PR], 2021.
- Guo-Niu Han and Christian Krattenthaler, Rectangular Scott-type permanents, arXiv:math/0003072 [math.RA], 2000.
- Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 17 Nov 2014.
- MathOverflow, Geometric / physical / probabilistic interpretations of Riemann zeta(n>1)?, answer by Tom Copeland posted in Aug 2021.
- Henryk Minc, On a conjecture of R. F. Scott (1881), Linear Algebra Appl., Vol. 28 (1979), pp. 141-153.
- Theodoros Theodoulidis, On the Closed-Form Expression of Carson’s Integral, Period. Polytech. Elec. Eng. Comp. Sci., Vol. 59, No. 1 (2015), pp. 26-29.
- Eric Weisstein's World of Mathematics, Struve function.
Diagonal elements of
A306364 in even-numbered rows.
-
I:=[1, 3]; [n le 2 select I[n] else (4*n^2-8*n+3)*Self(n-1): n in [1..20]]; // Vincenzo Librandi, Nov 18 2014
-
a:= n-> (d-> d(2*n-1)*d(2*n+1))(doublefactorial):
seq(a(n), n=0..15); # Alois P. Heinz, Jan 30 2013
# second Maple program:
A079484 := n-> LinearAlgebra[Determinant](Matrix(2*n+1, (i, j)-> `if`(i+j=2*n+1, j, i))): seq(A079484(n), n=0..14); # Rainer Rosenthal, Jun 18 2024
-
a[n_] := (2n - 1)!!*(2n + 1)!!; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jan 30 2013 *)
-
/* Formula using the zeta function and a log integral:*/
L(n)= intnum(t=0, 1, log(1-1/t)^n);
Zetai(n)= -I*I^n*(2*Pi)^(n-1)/(n-1)*L(1-n);
a(m)={my(n=m+1);round(real(-I*2^(2*n-1)*Zetai(1/2-n)*L(-1/2+n)/(Zetai(-1/2+n)*L(1/2-n))))};
/* Gerry Martens, Mar 07 2011, adapted to offset 0 by Hugo Pfoertner, Jun 19 2024 */
-
{a(n) = if( n<0, -1 / self()(-1-n), (2*n + 1)! * (2*n)! / (n! * 2^n)^2 )}; /* Michael Somos, May 04 2017 */
-
{a(n) = if( n<0, -1 / self()(-1-n), my(m = 2*n + 1); m! * polcoeff( x / sqrt( 1 - x^2 + x * O(x^m) ), m))}; /* Michael Somos, May 04 2017 */
-
\\ using the Pochhammer symbol
a(n) = {my(P(x,k)=gamma(x+k)/gamma(x)); 4^n*round(P(1/2,n)*P(3/2,n))} \\ Hugo Pfoertner, Jun 20 2024
-
\\ Scott's (1881) method
a(n) = {my(m=2*n+1, X = polroots(x^m-1), Y = polroots(x^m+1), M = matrix(m, m, i, j, 1/(X[i]-Y[j]))); (-1)^n * round(2^m * real(matpermanent(M)))}; \\ Hugo Pfoertner, Jun 23 2024
Simpler description from Daniel Flath (deflath(AT)yahoo.com), Mar 05 2004
A302909
Determinant of n X n matrix whose main diagonal consists of the first n 5-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 4, 44, 924, 31416, 1570800, 108385200, 9863053200, 1144114171200, 164752440652800, 28831677114240000, 6025820516876160000, 1482351847151535360000, 423952628285339112960000, 139480414705876568163840000, 52305155514703713061440000000
Offset: 1
The 7 X 7 matrix (as below) has determinant 108385200.
1 1 1 1 1 1 1
1 5 1 1 1 1 1
1 1 12 1 1 1 1
1 1 1 22 1 1 1
1 1 1 1 35 1 1
1 1 1 1 1 51 1
1 1 1 1 1 1 70
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1), this sequence (k=5),
A302910 (k=6),
A302911 (k=7),
A302912 (k=8),
A302913 (k=9),
A302914 (k=10).
-
d:=(i,j)->`if`(i<>j,1,i*(3*i-1)/2):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..17);
-
Table[FullSimplify[Gamma[n] * Gamma[n + 5/3] * 3^(n + 1) / (5 * Gamma[2/3] * 2^n)], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
Module[{nn=20,pn5},pn5=PolygonalNumber[5,Range[nn]];Table[Det[DiagonalMatrix[Take[pn5,n]]/.(0->1)],{n,nn}]] (* Harvey P. Dale, Feb 07 2025 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(3*i-1)/2))); \\ Michel Marcus, Apr 16 2018
-
first(n) = my(res = vector(n)); res[1] = 1; for(i = 1, n - 1, res[i + 1] = res[i] * i*(3*i + 5)/2); res \\ David A. Corneth, Apr 16 2018
A302910
Determinant of n X n matrix whose main diagonal consists of the first n 6-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 5, 70, 1890, 83160, 5405400, 486486000, 57891834000, 8799558768000, 1663116607152000, 382516819644960000, 105192125402364000000, 34082248630365936000000, 12849007733647957872000000, 5576469356403213716448000000, 2760352331419590789641760000000
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 6 1 1 1 1 1 ...
1 1 15 1 1 1 1 ...
1 1 1 28 1 1 1 ...
1 1 1 1 45 1 1 ...
1 1 1 1 1 66 1 ...
1 1 1 1 1 1 91 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5), this sequence (k=6),
A302911 (k=7),
A302912 (k=8),
A302913 (k=9),
A302914 (k=10).
Odd bisection of column k=1 of
A097591.
-
d:=(i,j)->`if`(i<>j,1,i*(2*i-1)):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..20);
-
nmax = 20; Table[Det[Table[If[i == j, i*(2*i - 1), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[(n + 1/2) * (2*n - 1)! / (3 * 2^(n - 2)), {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[Det[DiagonalMatrix[PolygonalNumber[6,Range[n]]]/.(0->1)],{n,20}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 23 2020 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(2*i-1)))); \\ Michel Marcus, Apr 16 2018
A010792
a(n) = n!*(n+3)! / 3!.
Original entry on oeis.org
1, 4, 40, 720, 20160, 806400, 43545600, 3048192000, 268240896000, 28970016768000, 3766102179840000, 579979735695360000, 104396352425164800000, 21714441304434278400000, 5168037030455358259200000, 1395369998222946729984000000, 424192479459775805915136000000
Offset: 0
A010793
a(n) = n!*(n+4)! / 4!.
Original entry on oeis.org
1, 5, 60, 1260, 40320, 1814400, 108864000, 8382528000, 804722688000, 94152554496000, 13181357629440000, 2174924008857600000, 417585409700659200000, 92286375543845683200000, 23256166637049112166400000, 6628007491558996967424000000
Offset: 0
-
f := n->n!*(n+4)!/4!;
-
Table[n! * (n + 4)!/24, {n, 0, 20}] (* Amiram Eldar, Sep 27 2022 *)
-
a(n) = n!*(n+4)! / 4!; \\ Michel Marcus, Mar 30 2023
A010794
a(n) = n!*(n+5)!/5!.
Original entry on oeis.org
1, 6, 84, 2016, 72576, 3628800, 239500800, 20118067200, 2092278988800, 263627152588800, 39544072888320000, 6959756828344320000, 1419790392982241280000, 332230951957844459520000, 88373433220786626232320000, 26512029966235987869696000000
Offset: 0
A010795
a(n) = n!*(n+6)! / 6!.
Original entry on oeis.org
1, 7, 112, 3024, 120960, 6652800, 479001600, 43589145600, 4881984307200, 659067881472000, 105450861035520000, 19719311013642240000, 4259371178946723840000, 1052064681199840788480000, 294578110735955420774400000, 92792104881825957543936000000
Offset: 0
A175430
a(n) = (n-1)! * (n+1)!.
Original entry on oeis.org
2, 6, 48, 720, 17280, 604800, 29030400, 1828915200, 146313216000, 14485008384000, 1738201006080000, 248562743869440000, 41758540970065920000, 8142915489162854400000, 1824013069572479385600000, 465123332740982243328000000, 133955519829402886078464000000
Offset: 1
a(5) = (5-1)! * (5+1)! = 4! * 6! = 24 * 720 = 17280.
a(5) = ((1*2) * (2*3) * (3*4) * (4*5) * (5*6)) / 5 = 17280.
-
#[[1]] #[[3]] & /@ Partition[Range[0, 20]!, 3, 1] (* Harvey P. Dale, Jun 20 2017 *)
Table[(n - 1)! (n + 1)!, {n, 20}] (* or *) Table[Gamma[n] Gamma[n + 2], {n, 20}] (* Eric W. Weisstein, Jul 30 2018 *)
-
a(n) = (n-1)! * (n+1)!; \\ Michel Marcus, Feb 03 2016
A302911
Determinant of n X n matrix whose main diagonal consists of the first n 7-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 6, 102, 3366, 181764, 14541120, 1614064320, 237267455040, 44606281547520, 10437869882119680, 2974792916404108800, 1014404384493801100800, 407790562566508042521600, 190845983281125763900108800, 102865984988526786742158643200
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 7 1 1 1 1 1 ...
1 1 18 1 1 1 1 ...
1 1 1 34 1 1 1 ...
1 1 1 1 55 1 1 ...
1 1 1 1 1 81 1 ...
1 1 1 1 1 1 112 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6), this sequence (k=7),
A302912 (k=8),
A302913 (k=9),
A302914 (k=10).
-
d:=(i,j)->`if`(i<>j,1,i*(5*i-3)/2):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..20);
-
nmax = 20; Table[Det[Table[If[i == j, i*(5*i - 3)/2, 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[5^(n + 1) * Gamma[n] * Gamma[n + 7/5] / (7 * Gamma[2/5] * 2^n)], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(5*i-3)/2))); \\ Michel Marcus, Apr 16 2018
A302912
Determinant of n X n matrix whose main diagonal consists of the first n 8-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 7, 140, 5460, 349440, 33196800, 4381977600, 766846080000, 171773521920000, 47924812615680000, 16294436289331200000, 6631835569757798400000, 3183281073483743232000000, 1779454120077412466688000000, 1145968453329853628547072000000
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 8 1 1 1 1 1 ...
1 1 21 1 1 1 1 ...
1 1 1 40 1 1 1 ...
1 1 1 1 65 1 1 ...
1 1 1 1 1 96 1 ...
1 1 1 1 1 1 133 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6),
A302911 (k=7), this sequence (k=8),
A302913 (k=9),
A302914 (k=10).
-
d:=(i,j)->`if`(i<>j,1,i*(3*i-2)):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..16);
-
nmax = 20; Table[Det[Table[If[i == j, i*(3*i - 2), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[3^(n+1) * Gamma[n] * Gamma[n + 4/3] / (4*Gamma[1/3])], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)RecurrenceTable[{a[n+1] == a[n] * n * (3*n + 4), a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(3*i-2)))); \\ Michel Marcus, Apr 16 2018
Showing 1-10 of 17 results.
Comments