cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176824 a(n) = (n+1)^n mod n^n.

Original entry on oeis.org

0, 1, 10, 113, 1526, 24337, 450066, 9492289, 225159022, 5937424601, 172385029466, 5465884225969, 187964560069638, 6968912374274593, 277133723845128226, 11767703728247765249, 531431035966023003614, 25434534147318166381993, 1286040688679372821752042
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

From Peter Bala, Sep 12 2012: (Start)
a(n) = (n+1)^n - 2*n^n (since 2*n^n <= (n+1)^n < 3*n^n for n >= 1).
In terms of the tree function T(x) = Sum_{n >= 1} n^(n-1)*x^n/n! of A000169 the e.g.f. is T(x)*(2*x + T(x)*(T(x)-2))/(x^2*(T(x)-1)^3) = x + 10*x^2/2! + 113*x^3/3! + ... . (End)
a(n) = Sum_{i=1..n-1} C(n,i-1)*i^(i-1)*(n-i)^(n-i). - Vladimir Kruchinin, Sep 07 2015
a(n) = A000169(n+1) - 2*A000312(n). - Michel Marcus, Sep 07 2015, after Peter Bala

Extensions

a(19) from Vincenzo Librandi, Sep 07 2015