A227843 Numbers n such that the binary XOR of the divisors of n (A178910(n)) is a binary repunit (A000225).
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2592, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 2458624, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1
A226643 Numbers n such that the binary XOR of the divisors of n (A178910) is a binary palindrome (A006995) and not a power of 2 (A000079).
81, 162, 169, 324, 338, 648, 676, 1296, 1352, 2401, 2592, 2704, 3249, 4802, 5184, 5408, 6498, 9604, 10368, 10816, 12996, 19208, 20736, 21632, 25992, 38416, 41472, 43264, 51984, 76832, 82944, 86528, 103968, 112225, 153664, 165888, 173056, 194481
Offset: 1
Comments
A takeoff of A227843.
Programs
-
Mathematica
f[n_] := Fold[ BitXor[#1, #2] &, 0, Divisors@ n]; palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[n, base]}, idn == Reverse@ idn]; fQ[n_] := palQ[ f@ n, 2] && ! IntegerQ@ Log2@ n; Select[ Range@ 200000, fQ]
A028982 Squares and twice squares.
1, 2, 4, 8, 9, 16, 18, 25, 32, 36, 49, 50, 64, 72, 81, 98, 100, 121, 128, 144, 162, 169, 196, 200, 225, 242, 256, 288, 289, 324, 338, 361, 392, 400, 441, 450, 484, 512, 529, 576, 578, 625, 648, 676, 722, 729, 784, 800, 841, 882, 900, 961, 968, 1024
Offset: 1
Comments
Numbers n such that sum of divisors of n (A000203) is odd.
Also the numbers with an odd number of run sums (trapezoidal arrangements, number of ways of being written as the difference of two triangular numbers). - Ron Knott, Jan 27 2003
Pell(n)*Sum_{k|n} 1/Pell(k) is odd, where Pell(n) is A000129(n). - Paul Barry, Oct 12 2005
Number of odd divisors of n (A001227) is odd. - Vladeta Jovovic, Aug 28 2007
A071324(a(n)) is odd. - Reinhard Zumkeller, Jul 03 2008
Numbers n such that sum of odd divisors of n (A000593) is odd. - Omar E. Pol, Jul 05 2016
A187793(a(n)) is odd. - Timothy L. Tiffin, Jul 18 2016
If k is odd (k = 2m+1 for m >= 0), then 2^k = 2^(2m+1) = 2*(2^m)^2. If k is even (k = 2m for m >= 0), then 2^k = 2^(2m) = (2^m)^2. So, the powers of 2 sequence (A000079) is a subsequence of this one. - Timothy L. Tiffin, Jul 18 2016
Numbers n such that A175317(n) = Sum_{d|n} pod(d) is odd, where pod(m) = the product of divisors of m (A007955). - Jaroslav Krizek, Dec 28 2016
Positions of zeros in A292377 and A292383, positions of ones in A286357 and A292583. (See A292583 for why.) - Antti Karttunen, Sep 25 2017
Equivalently, numbers whose odd part is square. Cf. A042968. - Peter Munn, Jul 14 2020
These are the Heinz numbers of the partitions counted by A119620. - Gus Wiseman, Oct 29 2021
Numbers m whose abundance, A033880(m), is odd. - Peter Munn, May 23 2022
Numbers with an odd number of middle divisors (cf. A067742). - Omar E. Pol, Aug 02 2022
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Tewodros Amdeberhan, Victor H. Moll, Vaishavi Sharma, and Diego Villamizar, Arithmetic properties of the sum of divisors, arXiv:2007.03088 [math.NT], 2020. See p. 5.
- J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, Journal of Integer Sequences, Vol. 16 (2013), #13.1.8.
- Patrick De Geest, World!Of Numbers
- John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163.
- Eric Weisstein's World of Mathematics, Abundance
Crossrefs
Programs
-
Haskell
import Data.List.Ordered (union) a028982 n = a028982_list !! (n-1) a028982_list = tail $ union a000290_list a001105_list -- Reinhard Zumkeller, Jun 27 2015
-
Mathematica
Take[ Sort[ Flatten[ Table[{n^2, 2n^2}, {n, 35}] ]], 57] (* Robert G. Wilson v, Aug 27 2004 *)
-
PARI
list(lim)=vecsort(concat(vector(sqrtint(lim\1),i,i^2), vector(sqrtint(lim\2),i,2*i^2))) \\ Charles R Greathouse IV, Jun 16 2011
-
Python
from itertools import count, islice from sympy.ntheory.primetest import is_square def A028982_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:int(is_square(n) or is_square(n<<1)),count(max(startvalue,1))) A028982_list = list(islice(A028982_gen(),30)) # Chai Wah Wu, Jan 09 2023
-
Python
from math import isqrt def A028982(n): def f(x): return n-1+x-isqrt(x)-isqrt(x>>1) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 22 2024
Formula
a(n) is asymptotic to c*n^2 with c = 2/(1+sqrt(2))^2 = 0.3431457.... - Benoit Cloitre, Sep 17 2002
In particular, a(n) = c*n^2 + O(n). - Charles R Greathouse IV, Jan 11 2013
Sum_{n>=1} 1/a(n) = Pi^2/4. - Amiram Eldar, Jun 28 2020
A028983 Numbers whose sum of divisors is even.
3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82
Offset: 1
Comments
The even terms of this sequence are the even terms appearing in A178910. [Edited by M. F. Hasler, Oct 02 2014]
A071324(a(n)) is even. - Reinhard Zumkeller, Jul 03 2008
A083207 is a subsequence. - Reinhard Zumkeller, Jul 19 2010
Numbers k such that the number of odd divisors of k (A001227) is even. - Omar E. Pol, Apr 04 2016
Numbers k such that the sum of odd divisors of k (A000593) is even. - Omar E. Pol, Jul 05 2016
Numbers with a squarefree part greater than 2. - Peter Munn, Apr 26 2020
Equivalently, numbers whose odd part is nonsquare. Compare with the numbers whose square part is even (i.e., nonodd): these are the positive multiples of 4, A008586\{0}, and A225546 provides a self-inverse bijection between the two sets. - Peter Munn, Jul 19 2020
Also numbers whose reversed prime indices have alternating product > 1, where we define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). Also Heinz numbers of the partitions counted by A347448. - Gus Wiseman, Oct 29 2021
Numbers whose number of middle divisors is not odd (cf. A067742). - Omar E. Pol, Aug 02 2022
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A334748 (a permutation).
Programs
-
Mathematica
Select[Range[82],EvenQ[DivisorSigma[1,#]]&] (* Jayanta Basu, Jun 05 2013 *)
-
PARI
is(n)=!issquare(n)&&!issquare(n/2) \\ Charles R Greathouse IV, Jan 11 2013
-
Python
from math import isqrt def A028983(n): def f(x): return n-1+isqrt(x)+isqrt(x>>1) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 22 2024
Formula
a(n) ~ n. - Charles R Greathouse IV, Jan 11 2013
a(n) = n + (1 + sqrt(2)/2)*sqrt(n) + O(1). - Charles R Greathouse IV, Sep 01 2015
A007913(a(n)) > 2. - Peter Munn, May 05 2020
A295901 Unique sequence satisfying SumXOR_{d divides n} a(d) = n^2 for any n > 0, where SumXOR is the analog of summation under the binary XOR operation.
1, 5, 8, 20, 24, 40, 48, 80, 88, 120, 120, 160, 168, 240, 240, 320, 288, 312, 360, 480, 384, 408, 528, 640, 616, 520, 648, 960, 840, 816, 960, 1280, 1072, 1440, 1248, 1248, 1368, 1224, 1360, 1920, 1680, 1920, 1848, 1632, 1872, 2640, 2208, 2560, 2384, 3016
Offset: 1
Comments
This sequence is a variant of A256739; both sequences have nice graphical features.
Replacing "SumXOR" by "Sum" in the name leads to the Jordan function J_2 (A007434).
For any sequence f of nonnegative integers with positive indices:
- let x_f be the unique sequence satisfying SumXOR_{d divides n} x_f(d) = f(n) for any n > 0,
- see the links section for a gallery of x_f plots for some classic f functions,
- x_f(1) = f(1),
- x_f(p) = f(1) XOR f(p) for any prime p,
- x_f(n) = SumXOR_{d divides n and n/d is squarefree} f(d) for any n > 0,
- the function x: f -> x_f is a bijection,
- for any sequence f, x_{2*f} = 2 * x_f,
- for any sequences g and f, x_{g XOR f} = x_g XOR x_f.
From Antti Karttunen, Dec 29 2017: (Start)
The transform x_f described above could be called "Xor-Moebius transform of f" because of its analogous construction to Möbius transform with A008683 replaced by A008966 and the summation replaced by cumulative XOR.
(End)
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..16383
- Rémy Sigrist, Colored scatterplot of the first 2^17-1 terms (where the color is function of A087207(n) % 8)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A000010 (Euler totient function)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A000203 (sigma)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A001157 (sigma_2)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A000040 (prime numbers)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A000720 (PrimePi)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A006370 (Collatz map)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A005132 (Recamán's sequence)
Crossrefs
Programs
-
PARI
a(n{, f=k->k^2}) = my (v=0); fordiv(n,d,if (issquarefree(n/d), v=bitxor(v,f(d)))); return (v)
Formula
a(n) = SumXOR_{d divides n and n/d is squarefree} d^2.
A072594 In prime factorization of n replace multiplication with bitwise logical 'xor'.
1, 2, 3, 0, 5, 1, 7, 2, 0, 7, 11, 3, 13, 5, 6, 0, 17, 2, 19, 5, 4, 9, 23, 1, 0, 15, 3, 7, 29, 4, 31, 2, 8, 19, 2, 0, 37, 17, 14, 7, 41, 6, 43, 11, 5, 21, 47, 3, 0, 2, 18, 13, 53, 1, 14, 5, 16, 31, 59, 6, 61, 29, 7, 0, 8, 10, 67, 17, 20, 0, 71, 2, 73, 39, 3, 19, 12, 12, 79, 5, 0, 43, 83, 4
Offset: 1
Comments
Examples
a(35) = a(5*7) = a(5) 'xor' a(7) = '101' xor '111' = '010' = 2.
Links
- R. Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.Bits (xor) a072594 = foldl1 xor . a027746_row :: Integer -> Integer -- Reinhard Zumkeller, Nov 17 2012
-
Mathematica
a[n_] := BitXor @@ Flatten[ Table[ First[#], {Last[#]} ]& /@ FactorInteger[n] ]; Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Mar 11 2013 *)
-
PARI
a(n)=if(n==1, return(1)); my(f=factor(n),t); for(i=1,#f~, if(f[i,2]%2, t=bitxor(t,f[i,1]))); t \\ Charles R Greathouse IV, Aug 28 2016
-
Python
from sympy import factorint from operator import _xor_ from functools import reduce def a(n): return reduce(_xor_, (f for f in factorint(n, multiple=True))) if n > 1 else 1 print([a(n) for n in range(1, 85)]) # Michael S. Branicky, May 31 2025
A169813 a(n) = n XOR sigma(n), where sigma(n) is the number of divisors of n, A000203.
0, 1, 7, 3, 3, 10, 15, 7, 4, 24, 7, 16, 3, 22, 23, 15, 3, 53, 7, 62, 53, 50, 15, 36, 6, 48, 51, 36, 3, 86, 63, 31, 17, 20, 19, 127, 3, 26, 31, 114, 3, 74, 7, 120, 99, 102, 31, 76, 8, 111, 123, 86, 3, 78, 127, 64, 105, 96, 7, 148, 3, 94, 87, 63, 21, 210, 7, 58, 37, 214, 15, 139, 3, 56
Offset: 1
Links
Crossrefs
Programs
-
PARI
a(n) = bitxor(n, sigma(n)); \\ Michel Marcus, Nov 25 2017
-
Scheme
(define (A169813 n) (A003987bi n (A000203 n))) ;; Where A003987bi implements the bitwise-XOR, A003987 and code for A000203 can be found under that entry. - Antti Karttunen, Nov 25 2017
A227320 Binary XOR of proper divisors of n.
0, 1, 1, 3, 1, 0, 1, 7, 2, 6, 1, 2, 1, 4, 7, 15, 1, 15, 1, 8, 5, 8, 1, 6, 4, 14, 11, 14, 1, 6, 1, 31, 9, 18, 3, 21, 1, 16, 15, 20, 1, 26, 1, 26, 1, 20, 1, 14, 6, 21, 19, 16, 1, 6, 15, 26, 17, 30, 1, 4, 1, 28, 25, 63, 9, 58, 1, 52, 21, 38, 1, 33, 1, 38, 17, 50, 13, 54, 1
Offset: 1
Comments
An alternative definition (with A027751) would define a(1)=1. - R. J. Mathar, Jul 14 2013
However, this definition is more aligned with A001065 and A218403 where the initial term a(1) is also 0. - Antti Karttunen, Oct 08 2017
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16383
Programs
-
Mathematica
Array[BitXor @@ Most@ Divisors@ # &, 79] (* Michael De Vlieger, Oct 08 2017 *)
-
PARI
A227320(n) = { my(s=0); fordiv(n,d,if(d
Antti Karttunen, Oct 08 2017
A178908 GF(2) sum of divisors of n.
1, 3, 2, 7, 7, 6, 6, 15, 12, 9, 10, 14, 12, 10, 8, 31, 25, 20, 18, 21, 19, 30, 24, 30, 24, 20, 18, 18, 20, 24, 30, 63, 60, 43, 40, 36, 36, 54, 54, 45, 40, 53, 48, 54, 48, 40, 46, 62, 60, 40, 42, 36, 36, 54, 54, 34, 36, 60, 58, 56, 60, 34, 38, 127, 121, 68, 66, 79, 79, 120, 120
Offset: 1
Keywords
Comments
Take the n-th GF(2) polynomial, compute its sum of divisors, and find the index of that polynomial in the list of GF(2) polynomials.
If 2^k <= n < 2^(k+1), then also 2^k <= a(n) < 2^(k+1), since any proper divisor of a GF(2) polynomial has lower degree.
Numbers whose binary representations correspond to the divisors occur as the nonzero terms on row n of A280499, and they are XORed together to obtain a(n). A280493 gives another GF(2)[X]-analog of A000203. - Antti Karttunen, Jan 11 2017
Examples
5 => x^2 + 1 = (x+1)^2. sigma((x+1)^2) = (x+1)^2 + x+1 + 1 = x^2 + x + 1 => 7, so a(5) = 7. (All polynomials here are over GF(2).)
Links
Programs
-
PARI
a(n)={local(p,fm,r,k); while(n>0,p+=Mod(n,2)*x^k;n\=2;k++); r=Mod(1,2);fm=factor(p);for(k=1,matsize(fm)[1],r*=(fm[k,1]^(fm[k,2]+1)-1)/(fm[k,1]-1)); subst(lift(r),x,2)}
-
PARI
a(n) = {my(s = vecsum(divisors(Mod(1,2)*Pol(binary(n))))); subst(lift(s), x, 2);} \\ Michel Marcus, Jan 13 2019
-
Scheme
;; A003987bi implements the 2-argument bitwise-XOR function (A003987). ;; A091255bi implements the 2-argument GF(2)[X] GCD-function (A091255) which is used for checking that k is a divisor of n. (define (A178908 n) (let loop ((k n) (s 0)) (if (zero? k) s (loop (- k 1) (A003987bi s (if (= k (A091255bi n k)) k 0)))))) ;; Antti Karttunen, Jan 11 2017
Formula
A296207 Xor-Moebius transform of A227320, binary XOR of proper divisors of n.
0, 1, 1, 2, 1, 0, 1, 4, 3, 6, 1, 0, 1, 4, 7, 8, 1, 12, 1, 12, 5, 8, 1, 0, 5, 14, 9, 8, 1, 6, 1, 16, 9, 18, 3, 24, 1, 16, 15, 24, 1, 26, 1, 16, 5, 20, 1, 0, 7, 22, 19, 28, 1, 0, 15, 16, 17, 30, 1, 12, 1, 28, 31, 32, 9, 58, 1, 36, 21, 38, 1, 48, 1, 38, 19, 32, 13, 54, 1, 48, 27, 42, 1, 52, 21, 40, 31, 32, 1, 34, 11, 40, 29, 44, 23, 0, 1
Offset: 1
Comments
Crossrefs
Programs
Mathematica