cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A019881 Decimal expansion of sin(2*Pi/5) (sine of 72 degrees).

Original entry on oeis.org

9, 5, 1, 0, 5, 6, 5, 1, 6, 2, 9, 5, 1, 5, 3, 5, 7, 2, 1, 1, 6, 4, 3, 9, 3, 3, 3, 3, 7, 9, 3, 8, 2, 1, 4, 3, 4, 0, 5, 6, 9, 8, 6, 3, 4, 1, 2, 5, 7, 5, 0, 2, 2, 2, 4, 4, 7, 3, 0, 5, 6, 4, 4, 4, 3, 0, 1, 5, 3, 1, 7, 0, 0, 8, 5, 1, 9, 3, 5, 0, 1, 7, 1, 8, 7, 9, 2, 8, 1, 0, 9, 7, 0, 8, 1, 1, 3, 8, 1
Offset: 0

Views

Author

Keywords

Comments

Circumradius of pentagonal pyramid (Johnson solid 2) with edge 1. - Vladimir Joseph Stephan Orlovsky, Jul 19 2010
Circumscribed sphere radius for a regular icosahedron with unit edges. - Stanislav Sykora, Feb 10 2014
Side length of the particular golden rhombus with diagonals 1 and phi (A001622); area is phi/2 (A019863). Thus, also the ratio side/(shorter diagonal) for any golden rhombus. Interior angles of a golden rhombus are always A105199 and A137218. - Rick L. Shepherd, Apr 10 2017
An algebraic number of degree 4; minimal polynomial is 16x^4 - 20x^2 + 5, which has these smaller, other solutions (conjugates): -A019881 < -A019845 < A019845 (sine of 36 degrees). - Rick L. Shepherd, Apr 11 2017
This is length ratio of one half of any diagonal in the regular pentagon and the circumscribing radius. - Wolfdieter Lang, Jan 07 2018
Quartic number of denominator 2 and minimal polynomial 16x^4 - 20x^2 + 5. - Charles R Greathouse IV, May 13 2019
This gives the imaginary part of one of the members of a conjugate pair of roots of x^5 - 1, with real part (-1 + phi)/2 = A019827, where phi = A001622. A member of the other conjugte pair of roots is (-phi + sqrt(3 - phi)*i)/2 = (-A001622 + A182007*i)/2 = -A001622/2 + A019845*i. - Wolfdieter Lang, Aug 30 2022

Examples

			0.95105651629515357211643933337938214340569863412575022244730564443015317008...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A179296 (dodecahedron), A187110 (tetrahedron). - Stanislav Sykora, Feb 10 2014

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt((5 + Sqrt(5))/8); // G. C. Greubel, Nov 02 2018
  • Maple
    Digits:=100: evalf(sin(2*Pi/5)); # Wesley Ivan Hurt, Sep 01 2014
  • Mathematica
    RealDigits[Sqrt[(5 + Sqrt[5])/8], 10, 111]  (* Robert G. Wilson v *)
    RealDigits[Sin[2 Pi/5], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)
  • PARI
    default(realprecision, 120);
    real(I^(1/5)) \\ Rick L. Shepherd, Apr 10 2017
    

Formula

Equals sqrt((5+sqrt(5))/8) = cos(Pi/10). - Zak Seidov, Nov 18 2006
Equals 2F1(13/20,7/20;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals the real part of i^(1/5). - Stanislav Sykora, Apr 25 2012
Equals A001622*A182007/2. - Stanislav Sykora, Feb 10 2014
Equals sin(2*Pi/5) = sqrt(2 + phi)/2 = -sin(3*Pi/5), with phi = A001622 - Wolfdieter Lang, Jan 07 2018
Equals 2*A019845*A019863. - R. J. Mathar, Jan 17 2021

A179587 Decimal expansion of the volume of square cupola with edge length 1.

Original entry on oeis.org

1, 9, 4, 2, 8, 0, 9, 0, 4, 1, 5, 8, 2, 0, 6, 3, 3, 6, 5, 8, 6, 7, 7, 9, 2, 4, 8, 2, 8, 0, 6, 4, 6, 5, 3, 8, 5, 7, 1, 3, 1, 1, 4, 5, 8, 3, 5, 8, 4, 6, 3, 2, 0, 4, 8, 7, 8, 4, 4, 5, 3, 1, 5, 8, 6, 6, 0, 4, 8, 8, 3, 1, 8, 9, 7, 4, 7, 3, 8, 0, 2, 5, 9, 0, 0, 2, 5, 8, 3, 5, 6, 2, 1, 8, 4, 2, 7, 7, 1, 5, 1, 5, 6, 6, 7
Offset: 1

Views

Author

Keywords

Comments

Square cupola: 12 vertices, 20 edges, and 10 faces.
Also, decimal expansion of 1 + Product_{n>0} (1-1/(4*n+2)^2). - Bruno Berselli, Apr 02 2013
Decimal expansion of 1 + (least possible ratio of the side length of one inscribed square to the side length of another inscribed square in the same non-obtuse triangle). - L. Edson Jeffery, Nov 12 2014
2*sqrt(2)/3 is the radius of the base of the maximum-volume right cone inscribed in a unit-radius sphere. - Amiram Eldar, Sep 25 2022

Examples

			1.942809041582063365867792482806465385713114583584632048784453158660...
		

Crossrefs

Cf. A131594 (decimal expansion of sqrt(2)/3).

Programs

  • Mathematica
    RealDigits[N[1+(2*Sqrt[2])/3,200]]
    (* From the second comment: *) RealDigits[N[1 + Product[1 - 1/(4 n + 2)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    sqrt(8)/3+1 \\ Charles R Greathouse IV, Nov 14 2016

Formula

Equals (3 + 2*sqrt(2))/3.
Equals 1 + 2*A131594. - L. Edson Jeffery, Nov 12 2014

A179452 Decimal expansion of sqrt(5 + 2*sqrt(5))/2, the height of a regular pentagon and midradius of an icosidodecahedron with side length 1.

Original entry on oeis.org

1, 5, 3, 8, 8, 4, 1, 7, 6, 8, 5, 8, 7, 6, 2, 6, 7, 0, 1, 2, 8, 5, 1, 4, 5, 2, 8, 8, 0, 1, 8, 4, 5, 4, 9, 1, 2, 0, 0, 3, 3, 5, 1, 0, 7, 1, 7, 6, 8, 8, 9, 6, 2, 1, 3, 5, 1, 9, 5, 7, 8, 1, 2, 5, 1, 8, 7, 4, 3, 1, 6, 4, 4, 2, 4, 7, 5, 4, 5, 4, 5, 9, 2, 2, 7, 2, 9, 6, 8, 6, 0, 8, 3, 3, 5, 5, 2, 7, 1, 7, 6, 3, 5, 9, 5
Offset: 1

Views

Author

Keywords

Comments

Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.
Height of a regular pentagon with side length 1. - Jared Kish, Oct 16 2014
Volume of a regular decagonal prism with unit side length and height 2. - Wesley Ivan Hurt, May 04 2021

Examples

			1.53884176858762670128514528801845491200335107176889621351957812518743...
		

Crossrefs

Programs

  • Maple
    sqrt(5+2*sqrt(5.))/2
  • Mathematica
    RealDigits[Sqrt[5+2Sqrt[5]]/2,10,120][[1]] (* Harvey P. Dale, Jun 23 2017 *)
  • PARI
    sqrt(5+2*sqrt(5))/2

Formula

Equals sqrt(5+2*sqrt(5))/2.

Extensions

Partially rewritten by Charles R Greathouse IV, Feb 03 2011
Edited by M. F. Hasler, Oct 16 2014

A179552 Decimal expansion of the volume of pentagonal pyramid with edge length 1.

Original entry on oeis.org

3, 0, 1, 5, 0, 2, 8, 3, 2, 3, 9, 5, 8, 2, 4, 5, 7, 0, 6, 8, 3, 7, 1, 5, 5, 6, 9, 5, 3, 0, 4, 6, 9, 8, 4, 3, 1, 4, 3, 3, 5, 9, 0, 9, 8, 3, 1, 7, 1, 4, 6, 9, 0, 5, 1, 7, 7, 9, 5, 4, 0, 5, 1, 8, 9, 2, 1, 0, 5, 0, 3, 8, 5, 6, 8, 2, 4, 1, 8, 7, 0, 8, 0, 8, 9, 3, 3, 9, 3, 3, 6, 8, 2, 4, 4, 9, 2, 6, 1, 4, 5, 7, 0, 6, 2
Offset: 0

Views

Author

Keywords

Comments

Pentagonal pyramid: 6 faces, 6 vertices, and 10 edges.
Also equals the covariance-matrix eigenvalue of the regular icosahedron with unit edge lengths. - Chittaranjan Pardeshi, Jul 18 2025

Examples

			0.3015028323958245706837155695304698431433590983171469051779540518921...
		

Crossrefs

Programs

Formula

Equals (5+sqrt(5))/24.

A179451 Decimal expansion of the surface area of an icosidodecahedron with side length 1.

Original entry on oeis.org

2, 9, 3, 0, 5, 9, 8, 2, 8, 4, 4, 9, 1, 1, 9, 8, 9, 5, 4, 0, 7, 4, 5, 3, 7, 5, 4, 3, 6, 1, 9, 2, 6, 7, 7, 0, 2, 7, 6, 0, 2, 5, 1, 6, 3, 0, 9, 1, 7, 4, 2, 8, 3, 0, 9, 0, 7, 6, 4, 1, 7, 1, 3, 8, 1, 5, 4, 6, 0, 9, 2, 9, 9, 1, 0, 5, 1, 5, 9, 4, 9, 6, 1, 3, 9, 5, 0, 2, 5, 8, 3, 0, 4, 3, 7, 2, 9, 5, 7, 6, 4, 3, 0, 4, 6
Offset: 2

Views

Author

Keywords

Comments

Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.

Examples

			29.3059828449119895407453754361926770276025163091742830907641713815460...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[30*(10+3*Sqrt[5]+Sqrt[75+30*Sqrt[5]])],200]]
  • PARI
    polrootsreal(x^8 - 1200*x^6 + 324000*x^4 - 27000000*x^2 + 324000000)[8] \\ Charles R Greathouse IV, Oct 30 2023

Formula

Sqrt(30*(10+3*sqrt(5)+sqrt(75+30*sqrt(5))))

Extensions

Partially rewritten by Charles R Greathouse IV, Feb 03 2011

A179450 Decimal expansion of the volume of an icosidodecahedron with edge length 1.

Original entry on oeis.org

1, 3, 8, 3, 5, 5, 2, 5, 9, 3, 6, 2, 4, 9, 4, 0, 4, 1, 3, 9, 8, 2, 5, 9, 9, 2, 0, 6, 1, 4, 0, 5, 2, 8, 2, 6, 6, 7, 0, 8, 1, 7, 5, 2, 0, 1, 8, 8, 9, 9, 3, 2, 2, 8, 8, 5, 4, 3, 4, 2, 0, 8, 8, 6, 1, 9, 9, 6, 4, 7, 5, 9, 5, 5, 9, 7, 3, 7, 8, 0, 5, 4, 8, 3, 4, 0, 8, 4, 0, 8, 2, 3, 7, 3, 9, 8, 8, 3, 1, 1, 2, 4, 1, 3, 6
Offset: 2

Views

Author

Keywords

Comments

Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.

Examples

			13.83552593624940413982599206140528266708175201889932288543420886199647...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(45+17*Sqrt[5])/6,200]]
  • PARI
    (45 + 17*sqrt(5))/6 \\ Charles R Greathouse IV, Oct 30 2023

Formula

(45 + 17*sqrt(5))/6.

Extensions

Partially rewritten by Charles R Greathouse IV, Feb 03 2011

A179590 Decimal expansion of the volume of pentagonal cupola with edge length 1.

Original entry on oeis.org

2, 3, 2, 4, 0, 4, 5, 3, 1, 8, 3, 3, 3, 1, 9, 3, 1, 3, 0, 9, 3, 9, 4, 4, 9, 1, 1, 2, 4, 8, 7, 5, 1, 7, 4, 9, 0, 2, 9, 3, 7, 4, 5, 5, 7, 3, 0, 7, 4, 3, 5, 0, 4, 8, 2, 8, 4, 7, 2, 6, 4, 8, 3, 0, 2, 7, 3, 6, 8, 0, 6, 1, 7, 0, 9, 1, 8, 6, 9, 9, 3, 2, 9, 4, 2, 9, 4, 2, 9, 3, 8, 9, 1, 9, 1, 8, 8, 1, 8, 3, 3, 1, 3, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			2.32404531833319313093944911248751749029374557307435048284726483027368...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(5+4*Sqrt[5])/6,200]]

Formula

Digits of (5+4*sqrt(5))/6.

A179553 Decimal expansion of the surface area of pentagonal pyramid with edge length 1.

Original entry on oeis.org

3, 8, 8, 5, 5, 4, 0, 9, 1, 0, 0, 5, 0, 0, 6, 3, 5, 3, 9, 6, 6, 8, 3, 1, 9, 9, 0, 4, 2, 7, 0, 9, 5, 0, 0, 5, 8, 0, 8, 5, 8, 8, 0, 7, 3, 7, 2, 7, 3, 1, 7, 4, 1, 1, 4, 2, 7, 6, 8, 5, 3, 4, 3, 1, 3, 3, 8, 7, 8, 5, 2, 6, 3, 3, 4, 4, 9, 6, 6, 2, 7, 7, 6, 8, 3, 8, 7, 3, 9, 7, 4, 8, 3, 4, 1, 4, 8, 4, 6, 0, 0, 8, 8, 4, 0
Offset: 1

Views

Author

Keywords

Comments

Pentagonal pyramid: 6 faces, 6 vertices, and 10 edges.

Examples

			3.885540910050063539668319904270950058085880737273174114276853431338785...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[5/2*(10+Sqrt[5]+Sqrt[75+30*Sqrt[5]])]/2,200]]

Formula

Digits of sqrt(5/2*(10+sqrt(5)+sqrt(75+30sqrt(5))))/2.

A179591 Decimal expansion of the surface area of pentagonal cupola with edge length 1.

Original entry on oeis.org

1, 6, 5, 7, 9, 7, 4, 9, 7, 5, 2, 9, 8, 8, 1, 9, 7, 0, 4, 6, 0, 9, 4, 0, 4, 6, 3, 4, 4, 3, 6, 3, 2, 2, 4, 6, 1, 8, 1, 0, 2, 6, 3, 6, 0, 9, 6, 1, 1, 7, 6, 5, 5, 1, 8, 1, 8, 7, 4, 7, 4, 4, 0, 5, 7, 2, 7, 5, 9, 4, 3, 4, 8, 4, 5, 8, 2, 6, 9, 3, 5, 7, 3, 8, 2, 0, 3, 5, 8, 2, 7, 9, 0, 0, 1, 9, 1, 2, 0, 4, 8, 2, 6, 8, 1
Offset: 2

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			16.5797497529881970460940463443632246181026360961176551818747440...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(20+Sqrt[10*(80+31*Sqrt[5]+Sqrt[2175+930*Sqrt[5]])])/4,200]]

Formula

Digits of (20+sqrt(10*(80+31*sqrt(5)+sqrt(2175+930*sqrt(5)))))/4.

A179588 Decimal expansion of the surface area of square cupola with edge length 1.

Original entry on oeis.org

1, 1, 5, 6, 0, 4, 7, 7, 9, 3, 2, 3, 1, 5, 0, 6, 7, 3, 9, 1, 1, 3, 0, 8, 2, 3, 7, 8, 9, 9, 2, 5, 2, 6, 8, 5, 2, 4, 0, 8, 2, 1, 4, 9, 0, 0, 4, 5, 6, 4, 2, 7, 6, 7, 7, 4, 4, 0, 9, 1, 6, 6, 4, 5, 5, 4, 3, 3, 3, 9, 7, 9, 7, 3, 8, 3, 3, 0, 1, 4, 1, 1, 4, 7, 8, 1, 9, 2, 1, 2, 5, 5, 4, 1, 2, 5, 3, 1, 7, 2, 1, 1, 4, 5, 6
Offset: 2

Views

Author

Keywords

Comments

Square cupola: 12 vertices, 20 edges, and 10 faces.

Examples

			11.56047793231506739113082378992526852408214900456427677440...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[7+2*Sqrt[2]+Sqrt[3],200]]

Formula

Digits of 7 + 2*sqrt(2) + sqrt(3).
Showing 1-10 of 19 results. Next