cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A257761 Positive integers whose square is the sum of 23 consecutive squares.

Original entry on oeis.org

92, 138, 4278, 6532, 205252, 313398, 9847818, 15036572, 472490012, 721442058, 22669672758, 34614182212, 1087671802372, 1660759304118, 52185576841098, 79681832415452, 2503820016570332, 3823067196637578, 120131175218534838, 183427543606188292
Offset: 1

Views

Author

Colin Barker, May 07 2015

Keywords

Comments

Positive integers x in the solutions to 2*x^2-46*y^2-1012*y-7590 = 0.

Examples

			92 is in the sequence because 92^2 = 8464 = 7^2+8^2+...+29^2.
		

Crossrefs

Programs

  • Magma
    I:=[92,138,4278,6532]; [n le 4 select I[n] else 48*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, May 11 2015
  • Mathematica
    LinearRecurrence[{0, 48, 0, -1}, {92, 138, 4278, 6532}, 30] (* Vincenzo Librandi, May 11 2015 *)
  • PARI
    Vec(-46*x*(x-1)*(x+2)*(2*x+1)/(x^4-48*x^2+1) + O(x^100))
    

Formula

a(n) = 48*a(n-2)-a(n-4).
G.f.: -46*x*(x-1)*(x+2)*(2*x+1) / (x^4-48*x^2+1).

A257765 Positive integers whose square is the sum of 26 consecutive squares.

Original entry on oeis.org

195, 1599, 2379, 19695, 163059, 242619, 2008695, 16630419, 24744759, 204867195, 1696139679, 2523722799, 20894445195, 172989616839, 257394980739, 2131028542695, 17643244777899, 26251764312579, 217344016909695, 1799437977728859, 2677422564902319
Offset: 1

Views

Author

Colin Barker, May 07 2015

Keywords

Comments

Positive integers x in the solutions to 2*x^2-52*y^2-1300*y-11050 = 0.

Examples

			195 is in the sequence because 195^2 = 38025 = 25^2+26^2+...+50^2.
		

Crossrefs

Programs

  • Magma
    I:=[195,1599,2379,19695,163059,242619 ]; [n le 6 select I[n] else 102*Self(n-3)-Self(n-6): n in [1..30]]; // Vincenzo Librandi, May 11 2015
  • Mathematica
    LinearRecurrence[{0, 0, 102, 0, 0, -1}, {195, 1599, 2379, 19695, 163059, 242619}, 30] (* Vincenzo Librandi, May 11 2015 *)
    Select[Sqrt[#]&/@Total/@Partition[Range[10^6]^2,26,1],IntegerQ] (* The program generates the first 7 terms of the sequence. *) (* Harvey P. Dale, Mar 10 2024 *)
  • PARI
    Vec(-39*x*(x^5+x^4+5*x^3-61*x^2-41*x-5) / (x^6-102*x^3+1) + O(x^100))
    

Formula

a(n) = 102*a(n-3)-a(n-6).
G.f.: -39*x*(x^5+x^4+5*x^3-61*x^2-41*x-5) / (x^6-102*x^3+1).

A257767 Positive integers whose square is the sum of 33 consecutive squares.

Original entry on oeis.org

143, 253, 440, 1133, 1397, 3608, 6325, 11495, 20152, 52063, 64207, 165880, 290807, 528517, 926552, 2393765, 2952125, 7626872, 13370797, 24300287, 42601240, 110061127, 135733543, 350670232, 614765855, 1117284685, 1958730488, 5060418077, 6240790853
Offset: 1

Views

Author

Colin Barker, May 07 2015

Keywords

Comments

Positive integers x in the solutions to 2*x^2-66*y^2-2112*y-22880 = 0.

Examples

			143 is in the sequence because 143^2 = 20449 = 7^2+8^2+...+39^2.
		

Crossrefs

Programs

  • Magma
    I:=[143,253,440,1133,1397,3608,6325,11495,20152, 52063,64207,165880]; [n le 12 select I[n] else 46*Self(n-6)-Self(n-12): n in [1..30]]; // Vincenzo Librandi, May 11 2015
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 46, 0, 0, 0, 0, 0, -1}, {143, 253, 440, 1133, 1397, 3608, 6325, 11495, 20152, 52063, 64207, 165880}, 50] (* Vincenzo Librandi, May 08 2015 *)
  • PARI
    Vec(-11*x*(8*x^11+5*x^10+5*x^9+8*x^8+13*x^7+23*x^6-328*x^5-127*x^4-103*x^3-40*x^2-23*x-13) / (x^12-46*x^6+1) + O(x^100))
    

Formula

a(n) = 46*a(n-6)-a(n-12).
G.f.: -11*x*(8*x^11+5*x^10+5*x^9+8*x^8+13*x^7+23*x^6-328*x^5-127*x^4-103*x^3-40*x^2-23*x-13) / (x^12-46*x^6+1).

A257781 Positive integers whose square is the sum of 50 consecutive squares.

Original entry on oeis.org

245, 385, 495, 655, 795, 1055, 1365, 2205, 2855, 3795, 4615, 6135, 7945, 12845, 16635, 22115, 26895, 35755, 46305, 74865, 96955, 128895, 156755, 208395, 269885, 436345, 565095, 751255, 913635, 1214615, 1573005, 2543205, 3293615, 4378635, 5325055, 7079295
Offset: 1

Views

Author

Colin Barker, May 08 2015

Keywords

Comments

Positive integers x in the solutions to 2*x^2-100*y^2-4900*y-80850 = 0.

Examples

			245 is in the sequence because 245^2 = 60025 = 7^2+8^2+...+56^2.
		

Crossrefs

Programs

  • Magma
    I:=[245,385,495,655,795,1055,1365,2205,2855,3795, 4615,6135]; [n le 12 select I[n] else 6*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, May 11 2015
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, -1}, {245, 385, 495, 655, 795, 1055, 1365, 2205, 2855, 3795, 4615, 6135}, 50] (* Vincenzo Librandi, May 11 2015 *)
    Select[Sqrt[Total/@Partition[Range[10^6]^2,50,1]],IntegerQ] (* Harvey P. Dale, Aug 07 2025 *)
  • PARI
    Vec(-5*x*(39*x^11 +31*x^10 +27*x^9 +23*x^8 +21*x^7 +21*x^6 -211*x^5 -159*x^4 -131*x^3 -99*x^2 -77*x -49) / ((x^6 -2*x^3 -1)*(x^6 +2*x^3 -1)) + O(x^100))
    

Formula

a(n) = 6*a(n-6)-a(n-12).
G.f.: -5*x*(39*x^11 +31*x^10 +27*x^9 +23*x^8 +21*x^7 +21*x^6 -211*x^5 -159*x^4 -131*x^3 -99*x^2 -77*x -49) / ((x^6 -2*x^3 -1)*(x^6 +2*x^3 -1)).

A257780 Positive integers whose square is the sum of 47 consecutive squares.

Original entry on oeis.org

3854, 5170, 369890, 496226, 35505586, 47632526, 3408166366, 4572226270, 327148465550, 438886089394, 31402844526434, 42128492355554, 3014345926072114, 4043896380043790, 289345806058396510, 388171923991848286, 27774183035679992846, 37260460806837391666
Offset: 1

Views

Author

Colin Barker, May 08 2015

Keywords

Comments

Positive integers x in the solutions to 2*x^2-94*y^2-4324*y-67022 = 0.

Examples

			3854 is in the sequence because 3854^2 = 14853316 = 539^2+540^2+...+585^2.
		

Crossrefs

Programs

  • Magma
    I:=[3854,5170,369890,496226 ]; [n le 4 select I[n] else 96*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, May 11 2015
  • Mathematica
    LinearRecurrence[{0, 96, 0, -1}, {3854, 5170, 369890, 496226}, 50] (* Vincenzo Librandi, May 11 2015 *)
  • PARI
    Vec(-94*x*(x^3+x^2-55*x-41) / (x^4-96*x^2+1) + O(x^100))
    

Formula

a(n) = 96*a(n-2)-a(n-4).
G.f.: -94*x*(x^3+x^2-55*x-41) / (x^4-96*x^2+1).

A257823 Positive integers whose square is the sum of 59 consecutive squares.

Original entry on oeis.org

413, 531, 8673, 11269, 426511, 554187, 9192849, 11944727, 452101247, 587437689, 9744411267, 12661399351, 479226895309, 622683396153, 10329066750171, 13421071367333, 507980056926293, 660043812484491, 10948801010769993, 14226322987973629, 538458381114975271
Offset: 1

Views

Author

Colin Barker, May 10 2015

Keywords

Comments

Positive integers x in the solutions to 2*x^2-118*y^2-6844*y-133458 = 0.

Examples

			413 is in the sequence because 413^2 = 170569 = 22^2+23^2+...+80^2.
		

Crossrefs

Programs

  • Magma
    I:=[413,531,8673,11269,426511,554187,9192849, 11944727]; [n le 8 select I[n] else 1060*Self(n-4)-Self(n-8): n in [1..30]]; // Vincenzo Librandi, May 11 2015
  • Mathematica
    LinearRecurrence[{0, 0, 0, 1060, 0, 0, 0, -1}, {413, 531, 8673, 11269, 426511, 554187, 9192849, 11944727}, 30] (* Vincenzo Librandi, May 11 2015 *)
  • PARI
    Vec(-59*x*(x-1)*(7*x^6+16*x^5+163*x^4+354*x^3+163*x^2+16*x+7) / (x^8-1060*x^4+1) + O(x^100))
    

Formula

a(n) = 1060*a(n-4)-a(n-8).
G.f.: -59*x*(x-1)*(7*x^6+16*x^5+163*x^4+354*x^3+163*x^2+16*x+7) / (x^8-1060*x^4+1).

A257828 Positive integers whose square is the sum of 97 consecutive squares.

Original entry on oeis.org

679, 1545404, 3675742735, 81619738879, 194132514608060, 461744104375531831, 10253011689091642135, 24386783991798773338556, 58003955471481693294113311, 1287975802673112210113634031, 3063449905150311732357259611836, 7286414311424213782299531873117895
Offset: 1

Views

Author

Colin Barker, May 10 2015

Keywords

Comments

Positive integers x in the solutions to 2*x^2-194*y^2-18624*y-599072 = 0.

Examples

			679 is in the sequence because 679^2 = 461041 = 15^2+16^2+...+111^2.
		

Crossrefs

Programs

  • Magma
    I:=[679,1545404,3675742735,81619738879, 194132514608060,461744104375531831]; [n le 6 select I[n] else 125619266*Self(n-3)-Self(n-6): n in [1..20]]; // Vincenzo Librandi, May 11 2015
  • Mathematica
    LinearRecurrence[{0, 0, 125619266, 0, 0, -1}, {679, 1545404, 3675742735, 81619738879, 194132514608060, 461744104375531831}, 30] (* Vincenzo Librandi, May 11 2015 *)
    Rest[CoefficientList[Series[-679x(x-1)(x^4+2277x^3+5415742x^2+ 2277x+1)/ (x^6-125619266x^3+1),{x,0,15}],x]] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    Vec(-679*x*(x-1)*(x^4+2277*x^3+5415742*x^2+2277*x+1) / (x^6-125619266*x^3+1) + O(x^100))
    

Formula

a(n) = 125619266*a(n-3)-a(n-6).
G.f.: -679*x*(x-1)*(x^4+2277*x^3+5415742*x^2+2277*x+1) / (x^6-125619266*x^3+1).

A180442 Numbers n such that a sum of two or more consecutive squares beginning with n^2 is a square.

Original entry on oeis.org

1, 3, 7, 9, 11, 13, 15, 17, 18, 20, 21, 22, 25, 27, 28, 30, 32, 38, 44, 50, 52, 55, 58, 60, 64, 65, 67, 73, 74, 76, 83, 87, 91, 103, 104, 106, 112, 115, 117, 119, 121, 124, 128, 129, 131, 132, 137, 140, 142, 146, 158, 168, 170, 172, 175, 178, 181, 183, 192, 193, 197, 199, 200, 204
Offset: 1

Views

Author

Zhining Yang, Jan 19 2011

Keywords

Comments

That is, numbers n such that Sum_{i=n..k} i^2 is a square for some k > n.
The paper by Bremner, Stroeker, and Tzanakis describes how they found all n <= 100 by solving elliptic curves. Their solutions are the same as the terms in this sequence. They also show that there are only a finite number of sums of squares beginning with n^2 that sum to a square. For example, starting with 3^2, there are only 3 ways to sum consecutive squares to produce a square: 3^2 + 4^2, 3^2 + ... + 580^2, and 3^2 + ... + 963^2. See A184762, A184763, A184885, and A184886 for more results from their paper.
This sequence is more difficult than A001032, which has the possible lengths of the sequences of consecutive squares that sum to a square. Be careful adding terms to this sequence; a simple search may miss some terms. An elliptic curve needs to be solved for each number.
It is conjectured that the sequence continues 103, 104, 106, 112, 115, 117, 119, 121, 124, 128, 129, 131, 132, 137, 140, 142, 146, 158, 168, 170, 172, 175, 178, 181, 183, 192, 193, 197, 199, 200. - Jean-François Alcover, Sep 17 2013. Conjecture confirmed (see the Schoenfield link below). - Jon E. Schoenfield, Nov 22 2013

Examples

			30 is in the sequence because 30^2 + 31^2 + 32^2 + ... + 197^2 + 198^2 = 1612^2.
		

Crossrefs

Programs

Formula

Numbers n such that A075404(n) > 0.

Extensions

Example simplified by Jon E. Schoenfield, Sep 18 2013
More terms from Jon E. Schoenfield, Nov 22 2013

A257826 Positive integers whose square is the sum of 88 consecutive squares.

Original entry on oeis.org

2222, 2530, 39358, 55990, 872938, 994598, 15506810, 22059818, 343935350, 391869082, 6109643782, 8691512302, 135509654962, 154395423710, 2407184143298, 3424433787170, 53390460119678, 60831405072658, 948424442815630, 1349218220632678, 21035705777498170
Offset: 1

Views

Author

Colin Barker, May 10 2015

Keywords

Comments

Positive integers x in the solutions to 2*x^2-176*y^2-15312*y-446600 = 0.

Examples

			2222 is in the sequence because 2222^2 = 4937284 = 192^2+193^2+...+279^2.
		

Crossrefs

Programs

  • Magma
    I:=[2222,2530,39358,55990,872938,994598,15506810, 22059818]; [n le 8 select I[n] else 394*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, May 11 2015
  • Mathematica
    LinearRecurrence[{0, 0, 0, 394, 0, 0, 0, -1}, {2222, 2530, 39358, 55990, 872938, 994598, 15506810, 22059818}, 40] (* Vincenzo Librandi, May 11 2015 *)
  • PARI
    Vec(-22*x*(11*x^7+11*x^6+101*x^5+115*x^4-2545*x^3-1789*x^2-115*x-101) / (x^8-394*x^4+1) + O(x^100))
    

Formula

a(n) = 394*a(n-4)-a(n-8).
G.f.: -22*x*(11*x^7+11*x^6+101*x^5+115*x^4-2545*x^3-1789*x^2-115*x-101) / (x^8-394*x^4+1).

A257824 Positive integers whose square is the sum of 73 consecutive squares.

Original entry on oeis.org

4088, 23360, 1582640, 9047912, 18642443912, 106578370640, 7220791811360, 41281080400088, 85056113063608088, 486263602888235360, 32944848197744794640, 188344846763231651912, 388068345740467131839912, 2218576715650261475158640, 150310804012507009263599360
Offset: 1

Views

Author

Colin Barker, May 10 2015

Keywords

Comments

Positive integers x in the solutions to 2*x^2-146*y^2-10512*y-254040 = 0.

Examples

			4088 is in the sequence because 4088^2 = 16711744 = 442^2+443^2+...+514^2.
		

Crossrefs

Programs

  • Magma
    I:=[4088,23360,1582640,9047912,18642443912, 106578370640,7220791811360,41281080400088]; [n le 8 select I[n] else 4562498*Self(n-4)-Self(n-8): n in [1..20]]; // Vincenzo Librandi, May 11 2015
  • Mathematica
    LinearRecurrence[{0, 0, 0, 4562498, 0, 0, 0, -1}, {4088, 23360, 1582640, 9047912, 18642443912, 106578370640, 7220791811360, 41281080400088}, 40] (* Vincenzo Librandi, May 11 2015 *)
  • PARI
    Vec(-584*x*(x-1)*(7*x^6+47*x^5+2757*x^4+18250*x^3+2757*x^2+47*x+7) / ((x^4-2136*x^2-1)*(x^4+2136*x^2-1)) + O(x^100))
    

Formula

a(n) = 4562498*a(n-4)-a(n-8).
G.f.: -584*x*(x-1)*(7*x^6+47*x^5+2757*x^4+18250*x^3+2757*x^2+47*x+7) / ((x^4-2136*x^2-1)*(x^4+2136*x^2-1)).
Showing 1-10 of 12 results. Next