A188624
a(n) = greatest entry in row n of A184957.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 7, 11, 19, 32, 56, 102, 180, 331, 596, 1101, 2015, 3724, 6904, 12782, 23923, 44444, 83755, 156334, 296084, 555531, 1056095, 1991784, 3797790, 7197369, 13757665, 26186491, 50164787, 95847772, 183980036, 352670170, 678215028, 1303661995, 2511483176, 4838822931, 9337575130, 18025920971, 34840575458, 67371021603, 130412367572
Offset: 1
A156040
Number of compositions (ordered partitions) of n into 3 parts (some of which may be zero), where the first is at least as great as each of the others.
Original entry on oeis.org
1, 1, 3, 4, 6, 8, 11, 13, 17, 20, 24, 28, 33, 37, 43, 48, 54, 60, 67, 73, 81, 88, 96, 104, 113, 121, 131, 140, 150, 160, 171, 181, 193, 204, 216, 228, 241, 253, 267, 280, 294, 308, 323, 337, 353, 368, 384, 400, 417, 433, 451, 468, 486, 504, 523, 541, 561, 580, 600
Offset: 0
G.f. = 1 + x + 3*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 11*x^6 + 13*x^7 + 17*x^8 + 20*x^9 + ...
The a(4) = 6 compositions of 4 are: (4 0 0), (3 1 0), (3 0 1), (2 2 0), (2 1 1), (2 0 2).
From _Gus Wiseman_, Oct 05 2020: (Start)
The a(0) = 1 through a(7) = 13 triples of nonnegative integers summing to n where the first is at least as great as each of the other two are:
(000) (100) (101) (111) (202) (212) (222) (313)
(110) (201) (211) (221) (303) (322)
(200) (210) (220) (302) (312) (331)
(300) (301) (311) (321) (403)
(310) (320) (330) (412)
(400) (401) (402) (421)
(410) (411) (430)
(500) (420) (502)
(501) (511)
(510) (520)
(600) (601)
(610)
(700)
(End)
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Giedrius Alkauskas, Projective and polynomial superflows. I, arxiv.org/1601.06570 [math.AG] (2017), Section 4.3.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
A001840(n-2) is the version with opposite relations.
A001840(n-1) is the version with strict opposite relations.
A069905 is the case with strict relations.
-
a:= proc(n) local m, r; m := iquo(n, 6, 'r'); (4 +6*m +2*r) *m + [1, 1, 3, 4, 6, 8][r+1] end: seq(a(n), n=0..60); # Alois P. Heinz, Jun 14 2009
-
nn = 58; CoefficientList[Series[x^3/(1 - x^2)^2/(1 - x^3) + 1/(1 - x^2)^2/(1 - x), {x, 0, nn}], x] (* Geoffrey Critzer, Jul 14 2013 *)
CoefficientList[Series[(1 + x^2)/((1 + x) * (1 + x + x^2) * (1 - x)^3), {x, 0, 58}], x] (* L. Edson Jeffery, Jul 29 2014 *)
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 1, 3, 4, 6, 8}, 60] (* Harvey P. Dale, May 28 2015 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n+3,{3}],#[[1]]>=#[[2]]&[[1]]>=#[[3]]&]],{n,0,15}] (* Gus Wiseman, Oct 05 2020*)
-
{a(n) = n*(n+4)\6 + 1}; /* Michael Somos, Mar 26 2017 */
A156041
Array A(n,k) (n>=1, k>=1) read by antidiagonals, where A(n,k) is the number of compositions (ordered partitions) of n into exactly k parts, some of which may be zero, with the first part greater than or equal to all the rest.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 4, 4, 1, 1, 3, 6, 7, 5, 1, 1, 4, 8, 11, 11, 6, 1, 1, 4, 11, 17, 19, 16, 7, 1, 1, 5, 13, 26, 32, 31, 22, 8, 1, 1, 5, 17, 35, 54, 56, 48, 29, 9, 1, 1, 6, 20, 48, 82, 102, 93, 71, 37, 10, 1, 1, 6, 24, 63, 120, 172, 180, 148, 101, 46, 11, 1, 1, 7, 28, 81, 170
Offset: 1
The array A(n,k) begins:
1 1 1 1 1 1 1 1 1 ...
1 2 3 4 5 6 7 8 9 ...
1 2 4 7 11 16 22 29 ...
1 3 6 11 19 31 48 ...
1 3 8 17 32 56 ...
1 4 11 26 54 ...
1 4 13 35 ...
...
The antidiagonals are:
1,
1, 1,
1, 2, 1,
1, 2, 3, 1,
1, 3, 4, 4, 1,
1, 3, 6, 7, 5, 1,
1, 4, 8, 11, 11, 6, 1,
1, 4, 11, 17, 19, 16, 7, 1,
1, 5, 13, 26, 32, 31, 22, 8, 1,
...
A(3,5) = 11 and the 11 partition of 3 into 5 parts of this type are: (3,0,0,0,0), (2,1,0,0,0), (2,0,1,0,0), (2,0,0,1,0), (2,0,0,0,1), (1,1,1,0,0), (1,1,0,1,0), (1,1,0,0,1), (1,0,1,1,0), (1,0,1,0,1), (1,0,0,1,1).
-
b:= proc(n, i, m) option remember;
if n<0 then 0
elif n=0 then 1
elif i=1 then `if`(n<=m, 1, 0)
else add(b(n-k, i-1, m), k=0..m)
fi
end:
A:= (n, k)-> add(b(n-m, k-1, m), m=ceil(n/k)..n):
seq(seq(A(d-k, k), k=1..d-1), d=1..14); # Alois P. Heinz, Jun 14 2009
-
(* Returns rectangular array *) nn=10;Table[Table[Coefficient[Series[Sum[x^i((1-x^(i+1))/(1-x))^(k-1),{i,0,n}],{x,0,nn}],x^n],{k,1,nn}],{n,1,nn}]//Grid (* Geoffrey Critzer, Jul 15 2013 *)
A186807
Triangle read by rows: T(n,p) (n >= 2, 1 <= p <= n-1) = number of compositions of n into p parts, with first part >= all other parts.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 3, 1, 1, 5, 7, 6, 3, 1, 1, 6, 11, 11, 8, 4, 1, 1, 7, 16, 19, 17, 11, 4, 1, 1, 8, 22, 31, 32, 26, 13, 5, 1, 1, 9, 29, 48, 56, 54, 35, 17, 5, 1, 1, 10, 37, 71, 93, 102, 82, 48, 20, 6, 1, 1, 11, 46, 101, 148, 180, 172, 120, 63, 24, 6, 1
Offset: 2
Triangle begins:
1,
1, 1,
1, 2, 1,
1, 3, 2, 1,
1, 4, 4, 3, 1,
1, 5, 7, 6, 3, 1,
1, 6, 11, 11, 8, 4, 1,
1, 7, 16, 19, 17, 11, 4, 1,
1, 8, 22, 31, 32, 26, 13, 5, 1,
1, 9, 29, 48, 56, 54, 35, 17, 5, 1,
...
Showing 1-4 of 4 results.
Comments