cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A191020 Primes p with Kronecker symbol (p|2*11) = 1.

Original entry on oeis.org

13, 19, 23, 29, 31, 43, 47, 61, 71, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 173, 191, 197, 199, 211, 223, 227, 257, 277, 283, 293, 307, 311, 313, 347, 349, 353, 367, 373, 383, 401, 433, 449, 461, 463, 487, 491, 521, 523, 541, 547, 557, 563
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 22)", which is sequence A056874. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(563) | KroneckerSymbol(p, 22) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,22]==1&]
  • PARI
    lista(nn) = forprime(p=13, nn, if(kronecker(p, 22)==1, print1(p, ", "))) \\ Iain Fox, Mar 05 2018

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191023 Primes p which have Kronecker symbol (p|30) = 1.

Original entry on oeis.org

11, 13, 17, 23, 29, 31, 37, 43, 47, 59, 67, 79, 101, 113, 131, 137, 149, 151, 157, 163, 167, 179, 199, 233, 241, 251, 257, 263, 269, 271, 277, 283, 307, 353, 373, 383, 389, 397, 409, 419, 439, 461, 491, 503, 509, 523, 547, 593, 601, 613, 617, 631, 643, 647
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 30)", which is sequence A033212. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(647) | KroneckerSymbol(p, 30) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,30]==1&]
  • PARI
    is(n)=isprime(n) && kronecker(n,30)==1 \\ Charles R Greathouse IV, Jul 12 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191025 Primes p which have Kronecker symbol (p|34) = 1.

Original entry on oeis.org

3, 5, 11, 29, 37, 47, 61, 89, 103, 107, 109, 127, 131, 137, 139, 151, 163, 173, 181, 191, 197, 211, 223, 227, 239, 257, 263, 269, 271, 277, 281, 283, 317, 347, 353, 359, 379, 383, 397, 409, 419, 433, 457, 463, 499, 541, 547, 569, 571, 577, 593, 599, 619, 631
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 34)", which is sequence A038889. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(631) | KroneckerSymbol(p, 34) eq 1]; // Vincenzo Librandi, Sep 11 2012
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,34]==1&]

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191026 Primes p that have Jacobi symbol (p|35) = 1.

Original entry on oeis.org

3, 11, 13, 17, 29, 47, 71, 73, 79, 83, 97, 103, 109, 149, 151, 157, 167, 173, 179, 191, 211, 223, 227, 239, 257, 281, 283, 293, 307, 313, 331, 353, 359, 367, 379, 383, 389, 397, 401, 421, 431, 433, 449, 467, 491, 499, 503, 523, 541, 563, 569, 571, 577, 587
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "Primes which are squares (mod 35)", which is subsequence A106881. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(587) | JacobiSymbol(p,35) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,35]==1&]
  • PARI
    is(p)=kronecker(p, 35)==1&&isprime(p) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191028 Primes p with Kronecker symbol (p|38) = 1.

Original entry on oeis.org

3, 7, 13, 17, 23, 29, 37, 47, 53, 59, 67, 73, 107, 109, 137, 173, 179, 181, 191, 199, 211, 227, 233, 239, 263, 269, 271, 293, 307, 311, 313, 317, 331, 353, 359, 367, 373, 379, 421, 457, 463, 479, 503, 509, 523, 547, 563, 577, 593, 617, 631, 647, 659, 661
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 38)", which is sequence A106863. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(661) | KroneckerSymbol(p, 38) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,38]==1&]
  • PARI
    is(p)=kronecker(p, 38)==1&&isprime(p) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191029 Primes p with Jacobi symbol (p|39) = 1.

Original entry on oeis.org

2, 5, 11, 41, 43, 47, 59, 61, 71, 79, 83, 89, 103, 127, 137, 139, 149, 157, 167, 181, 197, 199, 211, 227, 239, 277, 281, 283, 293, 313, 317, 337, 353, 359, 367, 373, 383, 401, 431, 433, 439, 449, 461, 479, 509, 523, 547, 557, 571, 587, 593, 601, 607, 617
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 39)", which is subsequence A267455 \ {3, 13}. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(617) | JacobiSymbol(p, 39) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,39]==1&]
  • PARI
    select(p->kronecker(p,39)==1&&isprime(p),[1..1000]) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A045373 Primes congruent to {0, 1, 2, 4} mod 7.

Original entry on oeis.org

2, 7, 11, 23, 29, 37, 43, 53, 67, 71, 79, 107, 109, 113, 127, 137, 149, 151, 163, 179, 191, 193, 197, 211, 233, 239, 263, 277, 281, 317, 331, 337, 347, 359, 373, 379, 389, 401, 421, 431, 443, 449, 457, 463, 487
Offset: 1

Views

Author

Keywords

Comments

Primes of the form x^2 + xy + 2y^2, discriminant -7. - N. J. A. Sloane, Jun 01 2014
Primes of the form x^2 - xy + 2y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Also, primes which are squares (mod 7) (or, (mod 14): see A191017 for a sequence formerly defined as such). - M. F. Hasler, Jan 15 2016

Crossrefs

Primes in A028951.
Cf. A191017, A003625 (complement).

Programs

  • Magma
    [p: p in PrimesUpTo(740)|p mod 7 in [0, 1, 2, 4]]; // Vincenzo Librandi, Jul 13 2012
    
  • Mathematica
    Select[Prime[Range[500]],MemberQ[{0,1,2,4},Mod[#,7]]&] (* Vincenzo Librandi, Jul 13 2012 *)
  • PARI
    select(p->issquare(Mod(p,7))&&isprime(p),[1..1000]) \\ M. F. Hasler, Jan 15 2016

A191032 Primes p with Kronecker symbol (p|46) = 1.

Original entry on oeis.org

5, 11, 19, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 83, 107, 109, 127, 149, 151, 157, 167, 181, 193, 223, 227, 229, 233, 239, 251, 257, 271, 283, 293, 311, 353, 373, 379, 389, 409, 419, 421, 439, 449, 463, 467, 487, 523, 557, 563, 571, 577, 593, 599, 601, 607
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 46)". - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(607) | KroneckerSymbol(p, 46) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,46]==1&]
  • PARI
    select(p->kronecker(p,46)==1&&isprime(p),[1..1000]) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191036 Primes p that have Jacobi symbol (p|55) = 1.

Original entry on oeis.org

2, 7, 13, 17, 31, 43, 59, 71, 73, 83, 89, 107, 127, 167, 173, 179, 181, 191, 193, 197, 199, 227, 229, 233, 251, 263, 269, 277, 283, 293, 307, 311, 331, 337, 347, 373, 379, 389, 401, 419, 421, 449, 457, 499, 503, 509, 521, 523, 547, 557, 563, 593, 599, 607
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 55", which is sequence A267478, a subsequence whose terms have (p|5) = (p|11) = 1 except for the two initial terms 5 and 11. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(607) | JacobiSymbol(p, 55) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,55]==1&]
  • PARI
    select(p->kronecker(p,55)==1&&isprime(p),[1..1500]) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191034 Primes p with Jacobi symbol (p|51) = 1.

Original entry on oeis.org

5, 11, 13, 19, 23, 29, 41, 43, 67, 71, 103, 107, 113, 127, 131, 151, 157, 167, 173, 197, 223, 227, 229, 233, 269, 271, 307, 311, 317, 331, 347, 349, 373, 401, 409, 419, 421, 431, 433, 449, 457, 463, 479, 503, 521, 523, 577, 613, 617, 631, 641, 653, 661, 677
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 51)", which is subsequence A106904. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(677) | JacobiSymbol(p, 51) eq 1]; // Vincenzo Librandi, Sep 10 2012
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,51]==1&]

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016
Showing 1-10 of 19 results. Next