cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A191017 Primes with Kronecker symbol (p|14) = 1.

Original entry on oeis.org

3, 5, 13, 19, 23, 59, 61, 71, 79, 83, 101, 113, 127, 131, 137, 139, 151, 157, 173, 181, 191, 193, 227, 229, 233, 239, 251, 263, 269, 281, 283, 293, 307, 337, 349, 359, 397, 401, 419, 431, 449, 457, 461, 463, 467, 487, 509, 523, 563, 569, 587, 599, 617, 619
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "Primes that are squares mod 14", which is sequence A045373. - M. F. Hasler, Jan 15 2016
Conjecture: primes congruent to {1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45} mod 56. - Vincenzo Librandi, Jun 22 2016
From Jianing Song, Nov 21 2019: (Start)
Rational primes that decompose in the field Q(sqrt(-14)).
These are primes p such that either one of (a) p == 1, 2, 4 (mod 7), p == 1, 7 (mod 8) or (b) p == 3, 5, 6 (mod 7), p == 3, 5 (mod 8) holds. So the conjecture above is correct. (End)

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(619) | KroneckerSymbol(p, 14) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,14]==1&]
  • PARI
    is(p)=kronecker(p, 14)==1&&isprime(p) \\ Michel Marcus, Jun 23 2016 after A191032

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191023 Primes p which have Kronecker symbol (p|30) = 1.

Original entry on oeis.org

11, 13, 17, 23, 29, 31, 37, 43, 47, 59, 67, 79, 101, 113, 131, 137, 149, 151, 157, 163, 167, 179, 199, 233, 241, 251, 257, 263, 269, 271, 277, 283, 307, 353, 373, 383, 389, 397, 409, 419, 439, 461, 491, 503, 509, 523, 547, 593, 601, 613, 617, 631, 643, 647
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 30)", which is sequence A033212. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(647) | KroneckerSymbol(p, 30) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,30]==1&]
  • PARI
    is(n)=isprime(n) && kronecker(n,30)==1 \\ Charles R Greathouse IV, Jul 12 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191025 Primes p which have Kronecker symbol (p|34) = 1.

Original entry on oeis.org

3, 5, 11, 29, 37, 47, 61, 89, 103, 107, 109, 127, 131, 137, 139, 151, 163, 173, 181, 191, 197, 211, 223, 227, 239, 257, 263, 269, 271, 277, 281, 283, 317, 347, 353, 359, 379, 383, 397, 409, 419, 433, 457, 463, 499, 541, 547, 569, 571, 577, 593, 599, 619, 631
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 34)", which is sequence A038889. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(631) | KroneckerSymbol(p, 34) eq 1]; // Vincenzo Librandi, Sep 11 2012
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,34]==1&]

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191026 Primes p that have Jacobi symbol (p|35) = 1.

Original entry on oeis.org

3, 11, 13, 17, 29, 47, 71, 73, 79, 83, 97, 103, 109, 149, 151, 157, 167, 173, 179, 191, 211, 223, 227, 239, 257, 281, 283, 293, 307, 313, 331, 353, 359, 367, 379, 383, 389, 397, 401, 421, 431, 433, 449, 467, 491, 499, 503, 523, 541, 563, 569, 571, 577, 587
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "Primes which are squares (mod 35)", which is subsequence A106881. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(587) | JacobiSymbol(p,35) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,35]==1&]
  • PARI
    is(p)=kronecker(p, 35)==1&&isprime(p) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191028 Primes p with Kronecker symbol (p|38) = 1.

Original entry on oeis.org

3, 7, 13, 17, 23, 29, 37, 47, 53, 59, 67, 73, 107, 109, 137, 173, 179, 181, 191, 199, 211, 227, 233, 239, 263, 269, 271, 293, 307, 311, 313, 317, 331, 353, 359, 367, 373, 379, 421, 457, 463, 479, 503, 509, 523, 547, 563, 577, 593, 617, 631, 647, 659, 661
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 38)", which is sequence A106863. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(661) | KroneckerSymbol(p, 38) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,38]==1&]
  • PARI
    is(p)=kronecker(p, 38)==1&&isprime(p) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191029 Primes p with Jacobi symbol (p|39) = 1.

Original entry on oeis.org

2, 5, 11, 41, 43, 47, 59, 61, 71, 79, 83, 89, 103, 127, 137, 139, 149, 157, 167, 181, 197, 199, 211, 227, 239, 277, 281, 283, 293, 313, 317, 337, 353, 359, 367, 373, 383, 401, 431, 433, 439, 449, 461, 479, 509, 523, 547, 557, 571, 587, 593, 601, 607, 617
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 39)", which is subsequence A267455 \ {3, 13}. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(617) | JacobiSymbol(p, 39) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,39]==1&]
  • PARI
    select(p->kronecker(p,39)==1&&isprime(p),[1..1000]) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A056874 Primes of form x^2+xy+3y^2, discriminant -11.

Original entry on oeis.org

3, 5, 11, 23, 31, 37, 47, 53, 59, 67, 71, 89, 97, 103, 113, 137, 157, 163, 179, 181, 191, 199, 223, 229, 251, 257, 269, 311, 313, 317, 331, 353, 367, 379, 383, 389, 397, 401, 419, 421, 433, 443, 449, 463, 467, 487, 499, 509, 521, 577, 587, 599
Offset: 1

Views

Author

N. J. A. Sloane, Sep 02 2000

Keywords

Comments

Also, primes of form (x^2+11*y^2)/4.
Also, primes of the form x^2-xy+3y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes congruent to 0, 1, 3, 4, 5 or 9 (mod 11). As this discriminant has class number 1, all binary quadratic forms ax^2+bxy+cy^2 with b^2-4ac=-11 represent these primes. - Rick L. Shepherd, Jul 25 2014
Also, primes which are squares (mod 11) (or, (mod 22), cf. A191020). - M. F. Hasler, Jan 15 2016
Also, primes p such that Legendre(-11,p) = 0 or 1. - N. J. A. Sloane, Dec 25 2017

Crossrefs

Cf. A002346 and A002347 for values of x and y.
Primes in A028954.

Programs

  • Mathematica
    QuadPrimes2[1, 1, 3, 100000] (* see A106856 *)
  • PARI
    { fc2(a,b,c,M) = my(p,t1,t2,n);
    m = 0;
    for(n=1,M, p = prime(n);
    t2 = qfbsolve(Qfb(a,b,c),p); if(t2 == 0,, m++; print(m," ",p )));
    }
    fc2(1,-1,3,10703);

Extensions

Edited by N. J. A. Sloane, Jun 01 2014 and Jun 16 2014

A191032 Primes p with Kronecker symbol (p|46) = 1.

Original entry on oeis.org

5, 11, 19, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 83, 107, 109, 127, 149, 151, 157, 167, 181, 193, 223, 227, 229, 233, 239, 251, 257, 271, 283, 293, 311, 353, 373, 379, 389, 409, 419, 421, 439, 449, 463, 467, 487, 523, 557, 563, 571, 577, 593, 599, 601, 607
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 46)". - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(607) | KroneckerSymbol(p, 46) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,46]==1&]
  • PARI
    select(p->kronecker(p,46)==1&&isprime(p),[1..1000]) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191036 Primes p that have Jacobi symbol (p|55) = 1.

Original entry on oeis.org

2, 7, 13, 17, 31, 43, 59, 71, 73, 83, 89, 107, 127, 167, 173, 179, 181, 191, 193, 197, 199, 227, 229, 233, 251, 263, 269, 277, 283, 293, 307, 311, 331, 337, 347, 373, 379, 389, 401, 419, 421, 449, 457, 499, 503, 509, 521, 523, 547, 557, 563, 593, 599, 607
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 55", which is sequence A267478, a subsequence whose terms have (p|5) = (p|11) = 1 except for the two initial terms 5 and 11. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(607) | JacobiSymbol(p, 55) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,55]==1&]
  • PARI
    select(p->kronecker(p,55)==1&&isprime(p),[1..1500]) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191034 Primes p with Jacobi symbol (p|51) = 1.

Original entry on oeis.org

5, 11, 13, 19, 23, 29, 41, 43, 67, 71, 103, 107, 113, 127, 131, 151, 157, 167, 173, 197, 223, 227, 229, 233, 269, 271, 307, 311, 317, 331, 347, 349, 373, 401, 409, 419, 421, 431, 433, 449, 457, 463, 479, 503, 521, 523, 577, 613, 617, 631, 641, 653, 661, 677
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 51)", which is subsequence A106904. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(677) | JacobiSymbol(p, 51) eq 1]; // Vincenzo Librandi, Sep 10 2012
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,51]==1&]

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016
Showing 1-10 of 18 results. Next