cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A053506 a(n) = (n-1)*n^(n-2).

Original entry on oeis.org

0, 1, 6, 48, 500, 6480, 100842, 1835008, 38263752, 900000000, 23579476910, 681091006464, 21505924728444, 737020860878848, 27246730957031250, 1080863910568919040, 45798768824157052688, 2064472028642102280192, 98646963440126439346902, 4980736000000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

a(n) is the number of endofunctions f of [n] which interchange a pair a<->b and for all x in [n] some iterate f^k(x) = a. E.g., a(3) = 6: 1<->2<-3; 3->1<->2; 2<->3<-1; 1->2<->3; 1<->3<-2; 2->1<->3. - Len Smiley, Nov 27 2001
If offset is 0: right side of the binomial sum n-> sum( i^(i-1) * (n-i+1)^(n-i)*binomial(n, i), i=1..n) - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
a(n) is the number of birooted labeled trees on n nodes in which the two root nodes are adjacent. - N. J. A. Sloane, May 01 2018
a(n) is the number of ways to partition the complete graph K_n into two components and choose an arborescence on each component. - Harry Richman, May 11 2022

References

  • A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.36)
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.

Crossrefs

Cf. A001865 which is the sum of A000169 + A053506 + A065513 + A065888 + ...

Programs

  • GAP
    List([1..20], n-> (n-1)*n^(n-2)) # G. C. Greubel, May 15 2019
  • Magma
    [(n-1)*n^(n-2): n in [1..20]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    Table[(n-1)*n^(n-2), {n,20}]
  • PARI
    vector(20, n, (n-1)*n^(n-2)) \\ G. C. Greubel, Jan 18 2017
    
  • Sage
    [(n-1)*n^(n-2) for n in (1..20)] # G. C. Greubel, May 15 2019
    

Formula

E.g.f.: LambertW(-x)^2/2. - Vladeta Jovovic, Apr 07 2001
E.g.f. if offset 0: W(-x)^2/((1+W(-x))*x), W(x) Lambert's function (principal branch).
The sequence 1, 1, 6, 48, ... satisfies a(n) = (n*(n+1)^n + 0^n)/(n+1); it is the main diagonal of A085388. - Paul Barry, Jun 30 2003
a(n) = Sum_{i=1..n-1} binomial(n-1,i-1)*i^(i-2)*(n-i)^(n-i). - Dmitry Kruchinin, Oct 28 2013
If offset = 0 and a(0) = 1 then a(n) = Sum_{k=0..n} (-1)^(n-k)* binomial(-k,-n)*n^k (cf. A195242). - Peter Luschny, Apr 11 2016

A242449 a(n) = Sum_{k=0..n} C(n,k) * (2*k+1)^(2*n+1).

Original entry on oeis.org

1, 28, 3612, 1064480, 560632400, 462479403072, 550095467201728, 891290348282967040, 1887146395301619304704, 5058811707344107766328320, 16746136671945501439084657664, 67088193422344140016282100785152, 319900900946743851959321101768511488
Offset: 0

Views

Author

Vaclav Kotesovec, May 14 2014

Keywords

Comments

Generally, for p>=1, a(n) = Sum_{k=0..n} C(n,k) * (p*k+1)^(p*n+1) is asymptotic to n^(p*n+1) * p^(p*n+1) * r^(p*n+3/2+1/p) / (sqrt(p+r-p*r) * exp(p*n) * (1-r)^(n+1/p)), where r = p/(p+LambertW(p*exp(-p))).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*(2*k+1)^(2*n+1),{k,0,n}],{n,0,20}]
  • PARI
    for(n=0,30, print1(sum(k=0,n, binomial(n,k)*(2*k+1)^(2*n+1)), ", ")) \\ G. C. Greubel, Nov 16 2017

Formula

a(n) ~ n^(2*n+1) * 2^(2*n+1) * r^(2*n+2) / (sqrt(2-r) * exp(2*n) * (1-r)^(n+1/2)), where r = 2/(2+LambertW(2*exp(-2))) = 0.901829091937052...

A355468 Expansion of Sum_{k>=0} (k^2 * x/(1 - k^2 * x))^k.

Original entry on oeis.org

1, 1, 17, 858, 85988, 14318320, 3570592512, 1245401343760, 578840603221568, 345763649636940672, 258099498410703320960, 235426611021544158413824, 257654470061373320338925568, 333210260028337620911268462592
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^2*x/(1-k^2*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, k^(2*n)*binomial(n-1, k-1)));

Formula

a(n) = Sum_{k=1..n} k^(2*n) * binomial(n-1,k-1) for n > 0.

A358740 Expansion of Sum_{k>=0} k! * ( k * x/(1 - k*x) )^k.

Original entry on oeis.org

1, 1, 9, 195, 7699, 482309, 43994741, 5508667927, 906931827831, 189998213001033, 49359340639141993, 15573690455085072011, 5866304418414451865723, 2600416934781350100016717, 1340037064604153376788884701, 794358527033920600533985973631
Offset: 0

Views

Author

Seiichi Manyama, Nov 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[1 + Series[Sum[k! * (k * x/(1 - k*x))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 18 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, k!*(k*x/(1-k*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, k!*k^n*binomial(n-1, k-1)));

Formula

a(n) = Sum_{k=1..n} k! * k^n * binomial(n-1,k-1) for n > 0.
a(n) ~ exp(exp(-1)) * n! * n^n. - Vaclav Kotesovec, Feb 18 2023

A360818 Expansion of Sum_{k>=0} ( (k*x)^2 / (1 - k*x) )^k.

Original entry on oeis.org

1, 0, 1, 1, 17, 65, 922, 7074, 106183, 1248479, 21144289, 331763177, 6441011484, 124904347404, 2773880604749, 63538143151589, 1600211849569585, 42076439530000297, 1189408501356380558, 35214128238218917974, 1106088535644470694779
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, ((k*x)^2/(1-k*x))^k))
    
  • PARI
    a(n) = sum(k=0, n\2, k^n*binomial(n-k-1, n-2*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} k^n * binomial(n-k-1,n-2*k).

A360819 Expansion of Sum_{k>=0} ( (k*x)^3 / (1 - k*x) )^k.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 65, 257, 769, 21732, 182268, 1075171, 22120299, 292415838, 2784944366, 52394511682, 914813711338, 12411977351379, 240868108545883, 5024364548461861, 88977315031536205, 1888119425325238979, 44744897995532996819, 971263427084750362992
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, ((k*x)^3/(1-k*x))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, k^n*binomial(n-2*k-1, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} k^n * binomial(n-2*k-1,n-3*k).

A360832 Expansion of Sum_{k>=0} ( k * x / (1 - (k * x)^2) )^k.

Original entry on oeis.org

1, 1, 4, 28, 288, 3855, 63232, 1227291, 27511296, 699389444, 19880700928, 624817997477, 21512488648704, 805233062024021, 32556682898653184, 1413981749074790444, 65652661019642560512, 3245240681196968168619, 170146759140135777861632
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x/(1-(k*x)^2))^k))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^n*binomial(n-k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^n * binomial(n-k-1,k).

A360833 Expansion of Sum_{k>=0} ( k * x / (1 - (k * x)^3) )^k.

Original entry on oeis.org

1, 1, 4, 27, 257, 3189, 48843, 889080, 18731109, 448004763, 11987812504, 354763577414, 11503684020051, 405589341060930, 15447798292502206, 632069580794524857, 27649951709582591394, 1287748889361331630661, 63616184683123273364961
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x/(1-(k*x)^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)^n*binomial(n-2*k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^n * binomial(n-2*k-1,k).
Showing 1-8 of 8 results.