cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A147854 Positive integers n such that n^2 = (x^4 - y^4)*(z^4 - t^4) where the pairs of integers (x,y) and (z,t) are not proportional.

Original entry on oeis.org

520, 975, 2040, 2080, 3567, 3900, 4680, 7215, 7800, 8160, 8320, 8775, 9840, 13000, 13920, 14268, 15600, 18360, 18720, 19680, 24375, 25480, 28860, 30160, 31200, 32103, 32640, 33280, 35100, 39360, 40545, 42120, 47775, 51000, 52000, 53040
Offset: 1

Views

Author

Max Alekseyev, Nov 17 2008, Nov 19 2008

Keywords

Comments

Positive integers n such that n^2 = s^4*A147858(m)*A147858(k) for positive integers s and kA147856.
Euler proved that if n^2 = (x^4 - y^4)*(z^4 - t^4) then a,b,c (if n is even) or 4a,4b,4c (if n is odd) form a triple of integers with all pairwise sums and differences being squares, where a=(x^4+y^4)*(z^4+t^4)/2, b=(n^2+(2xyzt)^2)/2 and c=(n^2-(2xyzt)^2)/2. Note that a,b,c are pairwise distinct if and only if (x,y) and (z,t) are not proportional.
4*A196289(n) = 4*(n^9 - n) belong to this sequence since (4*(n^9 - n))^2 = ((n^4+2*n^2-1)^4 - (n^4-2*n^2-1)^4) * (n^4 - 1).

Crossrefs

A147856 Positive integers n such that n^2 = (x^4 - y^4)*(z^4 - t^4) where x>y and z>t are distinct pairs of integers with gcd(x,y)=gcd(z,t)=1.

Original entry on oeis.org

520, 975, 2040, 3567, 7215, 7800, 9840, 13920, 19680, 30160, 40545, 53040, 57720, 62985, 95120, 108225, 138040, 151320, 180960, 230880, 247520, 286200, 289952, 352495, 473280, 535353, 546975, 720945, 769600, 1048560, 1141920, 1210560
Offset: 1

Views

Author

Max Alekseyev, Nov 18 2008

Keywords

Comments

Positive integers n such that n^2 = A147858(m)*A147858(k) for positive integers kA147854: any element n of A147854 is of the form a(k)*s^2 for some positive integer s.
4*A196289(2*k) and A196289(2*k+1) belong to this sequence.

A196290 a(n) = n^9 + n.

Original entry on oeis.org

0, 2, 514, 19686, 262148, 1953130, 10077702, 40353614, 134217736, 387420498, 1000000010, 2357947702, 5159780364, 10604499386, 20661046798, 38443359390, 68719476752, 118587876514, 198359290386, 322687697798, 512000000020, 794280046602, 1207269217814, 1801152661486, 2641807540248
Offset: 0

Views

Author

Vincenzo Librandi, Oct 01 2011

Keywords

Crossrefs

Programs

Formula

G.f.: 2*x*(1+247*x+7318*x^2+44089*x^3+78130*x^4+44089*x^5+7318*x^6+247*x^7+x^8) / (x-1)^10 . a(n) = 2*A168116(n). - R. J. Mathar, Oct 13 2011
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10). - Wesley Ivan Hurt, May 04 2023

A196291 a(n) = n^10 - n.

Original entry on oeis.org

0, 0, 1022, 59046, 1048572, 9765620, 60466170, 282475242, 1073741816, 3486784392, 9999999990, 25937424590, 61917364212, 137858491836, 289254654962, 576650390610, 1099511627760, 2015993900432, 3570467226606, 6131066257782, 10239999999980, 16679880978180, 26559922791402, 41426511213626
Offset: 0

Views

Author

Vincenzo Librandi, Oct 01 2011

Keywords

Crossrefs

Programs

  • Magma
    [n^10-n: n in [0..30]];
    
  • Mathematica
    Table[n^10 - n, {n, 0, 40}] (* and *) LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {0, 0, 1022, 59046, 1048572, 9765620, 60466170, 282475242, 1073741816, 3486784392, 9999999990}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2012 *)
  • PARI
    a(n)=n^10-n \\ Charles R Greathouse IV, Nov 22 2011

A196292 a(n) = n^10 + n.

Original entry on oeis.org

0, 2, 1026, 59052, 1048580, 9765630, 60466182, 282475256, 1073741832, 3486784410, 10000000010, 25937424612, 61917364236, 137858491862, 289254654990, 576650390640, 1099511627792, 2015993900466, 3570467226642, 6131066257820, 10240000000020, 16679880978222, 26559922791446
Offset: 0

Views

Author

Vincenzo Librandi, Oct 01 2011

Keywords

Crossrefs

Programs

  • Magma
    [n^10+n: n in [0..30]];

Formula

a(n) = 2 * A168118(n). - Alois P. Heinz, Jul 28 2025

A288604 a(n) = (n^9 - n)/10.

Original entry on oeis.org

0, 51, 1968, 26214, 195312, 1007769, 4035360, 13421772, 38742048, 99999999, 235794768, 515978034, 1060449936, 2066104677, 3844335936, 6871947672, 11858787648, 19835929035, 32268769776, 51199999998, 79428004656, 120726921777, 180115266144, 264180754020
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n^9-n)/10,{n,30}] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,51,1968,26214,195312,1007769,4035360,13421772,38742048,99999999},30] (* Harvey P. Dale, Jun 11 2019 *)
  • PARI
    concat(0, Vec(3*x^2*(17 + 486*x + 2943*x^2 + 5204*x^3 + 2943*x^4 + 486*x^5 + 17*x^6) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Jun 11 2017
    
  • PARI
    a(n)=(n^9-n)/10 \\ Charles R Greathouse IV, Jun 11 2017

Formula

a(n) = (n^9 - n)/10 = A196289(n)/10.
G.f.: 3*x^2*(17 + 486*x + 2943*x^2 + 5204*x^3 + 2943*x^4 + 486*x^5 + 17*x^6) / (1 - x)^10. - Colin Barker, Jun 11 2017
Showing 1-6 of 6 results.