cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A070826 One half of product of first n primes A000040.

Original entry on oeis.org

1, 3, 15, 105, 1155, 15015, 255255, 4849845, 111546435, 3234846615, 100280245065, 3710369067405, 152125131763605, 6541380665835015, 307444891294245705, 16294579238595022365, 961380175077106319535, 58644190679703485491635, 3929160775540133527939545, 278970415063349480483707695
Offset: 1

Views

Author

Wolfdieter Lang, May 10 2002

Keywords

Comments

Also, with offset 0, product of first n odd primes. - N. J. A. Sloane, Feb 26 2017
Identical to A002110(n)/2, n>=1.
a(n+1) is the least odd number with exactly n distinct prime divisors. - Labos Elemer, Mar 24 2003
Also, odd numbers n for which sigma(n)*phi(n)/n^2 reaches a new record low, monotonically decreasing to the lower bound 8/Pi^2. - M. F. Hasler, Jul 08 2025

Crossrefs

Cf. A003266 (for Fibonacci), A070825 (for Lucas), A003046 (for Catalan).
Cf. also A002110, A024451, A060389, A091852, A276086, A203008 [= A003415(a(1+n))].
Range of A196529.

Programs

  • Maple
    a:=n->mul(ithprime(j), j=2..n):seq(a(n), n=1..17); # Zerinvary Lajos, Aug 24 2008
  • Mathematica
    Rest[ FoldList[ Times, 1, Prime[ Range[ 18]] ]]/2 (* Robert G. Wilson v, Feb 17 2004 *)
    FoldList[Times, 1, Prime[Range[2, 18]]] (* Zak Seidov, Jan 26 2009 *)
  • PARI
    a(n) = prod(k=2, n, prime(k)) \\ Michel Marcus, Mar 25 2017, simplified by M. F. Hasler, Jul 09 2025
    
  • Python
    from sympy import primorial
    def A070826(n): return primorial(n)>>1 # Chai Wah Wu, Jul 21 2022

Formula

a(n) = A002110(n)/2.
From Antti Karttunen, Feb 06 2024: (Start)
a(1) = 1, and for n > 1, a(n) = A276086(A060389(n-1)).
a(n) = A024451(n) - 2*A203008(n-1).
(End)
a(n) = A000040(n)*a(n-1) for n > 1, a(1) = 1. - M. F. Hasler, Jul 09 2025

Extensions

Formula corrected by Gary Detlefs, Dec 07 2011

A196527 Greatest common divisor of sums of first n prime numbers and first n composite numbers.

Original entry on oeis.org

2, 5, 2, 1, 1, 1, 1, 1, 2, 1, 4, 1, 7, 1, 8, 1, 1, 1, 1, 1, 8, 7, 1, 1, 1, 3, 2, 1, 4, 3, 1, 1, 28, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 26, 1, 2, 1, 1, 1, 2, 1, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 10, 1, 2, 1, 1, 1, 1, 3, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 03 2011

Keywords

Comments

a(n) = gcd(A007504(n),A053767(n));
a(A196528(n)) = n and a(m) <> n for m < A196528(n).

Examples

			a(1) = gcd(2,4) = 2;
a(2) = gcd(2+3,4+6) = gcd(5,10) = 5;
a(3) = gcd(2+3+5,4+6+8) = gcd(10,18) = 2;
a(4) = gcd(2+3+5+7,4+6+8+9) = gcd(17,19) = 1.
		

Crossrefs

Cf. A196529.

Programs

  • Mathematica
    Module[{nn=90,pr,cmp},pr=Accumulate[Prime[Range[nn]]];cmp=Accumulate[ Take[Select[Range[2nn],CompositeQ],nn]];GCD@@#&/@Thread[{pr,cmp}]] (* Harvey P. Dale, Jul 29 2017 *)
Showing 1-2 of 2 results.