cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006100 Gaussian binomial coefficient [n, 2] for q = 3.

Original entry on oeis.org

1, 13, 130, 1210, 11011, 99463, 896260, 8069620, 72636421, 653757313, 5883904390, 52955405230, 476599444231, 4289397389563, 38604583680520, 347441274648040, 3126971536402441
Offset: 2

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A203243.

Programs

  • Maple
    a:=n->sum((9^(n-j)-3^(n-j))/6,j=0..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 15 2007
    A006100:=-1/(z-1)/(3*z-1)/(9*z-1); # Simon Plouffe in his 1992 dissertation with offset 0
  • Mathematica
    f[k_] := 3^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 32}]    (* A203243 *)
    Table[a[n]/3, {n, 2, 32}]  (* A006100 *)
  • Sage
    [gaussian_binomial(n,2,3) for n in range(2,19)] # Zerinvary Lajos, May 25 2009

Formula

G.f.: x^2/[(1-x)(1-3x)(1-9x)].
a(n) = (9^n - 4*3^n + 3)/48. - Mitch Harris, Mar 23 2008
a(n) = 4*a(n-1) -3*a(n-2) +9^(n-2), n>=4. - Vincenzo Librandi, Mar 20 2011
From Peter Bala, Jul 01 2025: (Start)
G.f. with an offset of 0: exp(Sum_{n >= 1} b(3*n)/b(n)*x^n/n) = 1 + 13*x + 130*x^2 + ..., where b(n) = 3^n - 1.
The following series telescope:
Sum_{n >= 2} 3^n/a(n) = 12; Sum_{n >= 2} 3^n/(a(n)*a(n+3)) = 129/16900;
Sum_{n >= 2} 9^n/(a(n)*a(n+3)) = 1227/16900;
Sum_{n >= 2} 3^n/(a(n)*a(n+3)*a(n+6)) = 156706257/18829431219368770. (End)

A157783 Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (3^(i-1)-x) in row n, column k, 0 <= k <= n.

Original entry on oeis.org

1, 1, -1, 3, -4, 1, 27, -39, 13, -1, 729, -1080, 390, -40, 1, 59049, -88209, 32670, -3630, 121, -1, 14348907, -21493836, 8027019, -914760, 33033, -364, 1, 10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093
Offset: 0

Views

Author

Roger L. Bagula, Mar 06 2009

Keywords

Comments

Row sums except n=0 are zero.
Triangle T(n,k), 0 <= k <= n, read by rows given by [1,q-1,q^2,q^3-q,q^4,q^5-q^2,q^6,q^7-q^3,q^8,...] DELTA [ -1,0,-q,0,-q^2,0,-q^3,0,-q^4,0,...] (for q=3)=[1,2,9,24,81,234,729,2160,6561,...] DELTA [ -1,0,-3,0,-9,0,-27,0,-81,0,-243,0,...] where DELTA is the operator defined in A084938; see A122006 and A000244. - Philippe Deléham, Mar 09 2009

Examples

			Triangle begins
  1;
  1, -1;
  3, -4, 1;
  27, -39, 13, -1;
  729, -1080, 390, -40, 1;
  59049, -88209, 32670, -3630, 121, -1;
  14348907, -21493836, 8027019, -914760, 33033, -364, 1;
  10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093, -1;
  22876792454961, -34309958505840, 12860351387820, -1481851188720, 55340738838, -677572560, 2688780, -3280, 1;
Row n=3 is 27 - 39*x + 13*x^2 - x^3.
		

Crossrefs

Cf. A157832, A135950, A022166, A047656 (column k=1), A003462 (subdiagonal k=n-1), A203243 (subdiagonal k=n-2).

Programs

  • Maple
    A157783 := proc(n,k)
        product( 3^(i-1)-x,i=1..n) ;
        coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Oct 15 2013
  • Mathematica
    Clear[f, q, M, n, m];
    q = 3;
    f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
    M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
    Table[M[n], {n, 1, 10}];
    Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
    a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
    Flatten[a]

A203197 (n-1)-st elementary symmetric function of the first n terms of (1,3,9,27,...)=A000244.

Original entry on oeis.org

1, 4, 39, 1080, 88209, 21493836, 15683355351, 34309958505840, 225130514549271201, 4431394012508602048404, 261672339357326993189906439, 46354644349343413982791427120040, 24634789450813795903041020740742981169
Offset: 1

Views

Author

Clark Kimberling, Dec 30 2011

Keywords

Crossrefs

Cf. A000244, A003462 (1st symm. func.), A203243 (2nd symm. func.).

Programs

  • Mathematica
    f[k_] := 3^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]  (* A203197 *)
    Table[1/2 (3 - 1/3^(n-1)) 3^Binomial[n, 2], {n, 1, 20}] (* Emanuele Munarini, Sep 14 2017 *)

Formula

a(n) = (1/2)*(3-1/3^(n-1))*3^(binomial(n,2)). - Emanuele Munarini, Sep 14 2017
Showing 1-3 of 3 results.