cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208529 Number of permutations of n > 1 having exactly 2 points on the boundary of their bounding square.

Original entry on oeis.org

2, 2, 4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600, 79833600, 958003200, 12454041600, 174356582400, 2615348736000, 41845579776000, 711374856192000, 12804747411456000, 243290200817664000, 4865804016353280000, 102181884343418880000
Offset: 2

Views

Author

David Nacin, Feb 27 2012

Keywords

Comments

A bounding square for a permutation of n is the square with sides parallel to the coordinate axis containing (1,1) and (n,n), and the set of points P of a permutation p is the set {(k,p(k)) for 0 < k < n+1}.
Sequences A098558 and A052849 have the same terms except for the first. - Joerg Arndt, Mar 03 2012
a(n) is the number of permutations of n symbols that commute with a transposition: a permutation p of {1,...,n} has exactly two points on the boundary of their bounding square if and only if p commutes with transposition (1, n). - Luis Manuel Rivera Martínez, Feb 27 2014
a(n) is also the determinant of a matrix M each of whose elements M(i, j) is the result of a Reverse and Add operation (RADD) on i in base j: M(i,j) = i + (reverse(i) represented in base j), with 1 <= i < n and 1 < j <= n. - Federico Provvedi, May 10 2024

Examples

			a(2) = 2 because {(1,1),(2,2)} and {(1,2),(2,1)} each have two points on the bounding square.
		

Crossrefs

Programs

Formula

a(n) = 2*(n-2)!.
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
G.f.: 2 + 2*x/Q(0), where Q(k) = 1 - 2*x*(2*k+1) - x^2*(2*k+1)*(2*k+2)/( 1 - 2*x*(2*k+2) - x^2*(2*k+2)*(2*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Sep 23 2013
a(n) = 2*n!/(n*(n-1)). - Vincenzo Librandi, Apr 15 2014
E.g.f.: 2 - (1 - x)*(2 + log(1/(1 - x)^2)). - Ilya Gutkovskiy, Mar 21 2018
Sum_{n>=2} 1/a(n) = e/2. - Amiram Eldar, Feb 02 2023