A208529 Number of permutations of n > 1 having exactly 2 points on the boundary of their bounding square.
2, 2, 4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600, 79833600, 958003200, 12454041600, 174356582400, 2615348736000, 41845579776000, 711374856192000, 12804747411456000, 243290200817664000, 4865804016353280000, 102181884343418880000
Offset: 2
Examples
a(2) = 2 because {(1,1),(2,2)} and {(1,2),(2,1)} each have two points on the bounding square.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..200
- Emeric Deutsch, Permutations and their bounding squares, Math Magazine, 85(1) (2012), 63.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
Programs
-
Magma
[2*Factorial(n)/n: n in [1..40]]; // Vincenzo Librandi, Apr 15 2014
-
Maple
A208529:=n->2*(n-2)!; seq(A208529(n), n=2..25); # Wesley Ivan Hurt, Feb 27 2014
-
Mathematica
Table[2(n-2)!, {n, 2, 10}] FoldList[Times, 2, Range@21] (* Arkadiusz Wesolowski, May 08 2012 *) Table[2 n!/n, {n, 1, 40}] (* Vincenzo Librandi, Apr 15 2014 *)
-
PARI
vector(33,n,2*n!/n) /* Anders Hellström, Jul 07 2015 */
-
Python
import math def a(n): return 2*math.factorial(n-2)
Formula
a(n) = 2*(n-2)!.
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
G.f.: 2 + 2*x/Q(0), where Q(k) = 1 - 2*x*(2*k+1) - x^2*(2*k+1)*(2*k+2)/( 1 - 2*x*(2*k+2) - x^2*(2*k+2)*(2*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Sep 23 2013
a(n) = 2*n!/(n*(n-1)). - Vincenzo Librandi, Apr 15 2014
E.g.f.: 2 - (1 - x)*(2 + log(1/(1 - x)^2)). - Ilya Gutkovskiy, Mar 21 2018
Sum_{n>=2} 1/a(n) = e/2. - Amiram Eldar, Feb 02 2023
Comments