0, 4, 16, 72, 384, 2400, 17280, 141120, 1290240, 13063680, 145152000, 1756339200, 22992076800, 323805081600, 4881984307200, 78460462080000, 1339058552832000, 24186745110528000, 460970906812416000, 9245027631071232000, 194632160654131200000
Offset: 2
A306641
A(n,k) = Sum_{j=0..n} (k*n)!/(j! * (n-j)!)^k, square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 4, 4, 4, 1, 12, 36, 8, 5, 1, 48, 900, 400, 16, 6, 1, 240, 45360, 94080, 4900, 32, 7, 1, 1440, 3855600, 60614400, 11988900, 63504, 64, 8, 1, 10080, 493970400, 82065984000, 114144030000, 1704214512, 853776, 128, 9
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
2, 2, 4, 12, 48, ...
3, 4, 36, 900, 45360, ...
4, 8, 400, 94080, 60614400, ...
5, 16, 4900, 11988900, 114144030000, ...
6, 32, 63504, 1704214512, 249344297250048, ...
- R. P. Stanley, Enumerative Combinatorics, Vol I, Exercise 53, p. 540.
A256031
Number of irreducible idempotents in partial Brauer monoid PB_n.
Original entry on oeis.org
2, 3, 12, 30, 240, 840, 10080, 45360, 725760, 3991680, 79833600, 518918400, 12454041600, 93405312000, 2615348736000, 22230464256000, 711374856192000, 6758061133824000, 243290200817664000, 2554547108585472000, 102181884343418880000, 1175091669949317120000
Offset: 1
-
A256031 := proc(n)
if type(n,'odd') then
2*n! ;
else
(n+1)*(n-1)! ;
end if;
end proc:
seq(A256031(n),n=1..20) ; # R. J. Mathar, Mar 14 2015
-
a[n_] := If[OddQ[n], 2*n!, (n + 1)*(n - 1)!];
Array[a, 20] (* Jean-François Alcover, Nov 24 2017, from Maple *)
A125553
Triangle read by rows: T(n,k) = S1(n,k)*2^k, where S1(n,k) is an unsigned Stirling number of the first kind (cf. A008275) (n >= 1, 1 <= k <= n).
Original entry on oeis.org
2, 2, 4, 4, 12, 8, 12, 44, 48, 16, 48, 200, 280, 160, 32, 240, 1096, 1800, 1360, 480, 64, 1440, 7056, 12992, 11760, 5600, 1344, 128, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512
Offset: 1
Triangle begins:
2
2 4
4 12 8
12 44 48 16
48 200 280 160 32
Triangle [0,1,1,2,2,3,3,...] DELTA [2,0,2,0,2,0,2,...], for 0<=k<=n, begins:
1;
0, 2;
0, 2, 4;
0, 4, 12, 8;
0, 12, 44, 48, 16;
0, 48, 200, 280, 160, 32;
-
with(combinat): T:=(n,k)->2^k*abs(stirling1(n,k)): for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Jan 05 2007
A008275 := proc(n,k) if n = 0 and k = 0 then 1 ; elif n = 0 or k = 0 then 0 ; else A008275(n-1,k-1)-(n-1)*A008275(n-1,k) ; fi ; end ; A125553 := proc(n,k) abs(A008275(n,k)*2^k) ; end ; nmax := 10 ; for n from 1 to nmax do for k from 1 to n do printf("%d, ",A125553(n,k)) ; od ; od ; # R. J. Mathar, Jan 12 2007
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> 2*(n+1)!/(n+1), 9); # Peter Luschny, Jan 27 2016
-
Flatten[Table[Table[2^k Abs[StirlingS1[n,k]], {k,1,n}], {n,1,8}]] (* Geoffrey Critzer, Dec 14 2011 *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, 2 (n + 1)!/(n + 1)], rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
A256881
a(n) = n!/ceiling(n/2).
Original entry on oeis.org
1, 2, 3, 12, 40, 240, 1260, 10080, 72576, 725760, 6652800, 79833600, 889574400, 12454041600, 163459296000, 2615348736000, 39520825344000, 711374856192000, 12164510040883200, 243290200817664000, 4644631106519040000, 102181884343418880000, 2154334728240414720000
Offset: 1
Cf.
A009445,
A052612,
A052616,
A052849,
A081457,
A208529,
A098558,
A107991,
A110468,
A229244,
A256031.
A360174
Triangle read by rows. T(n, k) = (k + 1) * abs(Stirling1(n, k)).
Original entry on oeis.org
1, 0, 2, 0, 2, 3, 0, 4, 9, 4, 0, 12, 33, 24, 5, 0, 48, 150, 140, 50, 6, 0, 240, 822, 900, 425, 90, 7, 0, 1440, 5292, 6496, 3675, 1050, 147, 8, 0, 10080, 39204, 52528, 33845, 11760, 2254, 224, 9, 0, 80640, 328752, 472496, 336420, 134694, 31752, 4368, 324, 10
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 2;
[2] 0, 2, 3;
[3] 0, 4, 9, 4;
[4] 0, 12, 33, 24, 5;
[5] 0, 48, 150, 140, 50, 6;
[6] 0, 240, 822, 900, 425, 90, 7;
[7] 0, 1440, 5292, 6496, 3675, 1050, 147, 8;
[8] 0, 10080, 39204, 52528, 33845, 11760, 2254, 224, 9;
-
T := (n, k) -> (k + 1)*abs(Stirling1(n, k)):
for n from 0 to 8 do seq(T(n, k), k = 0..n) od;
A240533
a(n) = numerators of n!/10^n.
Original entry on oeis.org
1, 1, 1, 3, 3, 3, 9, 63, 63, 567, 567, 6237, 18711, 243243, 1702701, 5108103, 5108103, 86837751, 781539759, 14849255421, 14849255421, 311834363841, 3430178002251, 78894094051773, 236682282155319, 236682282155319, 3076869668019147, 83075481036516969
Offset: 0
-
[Numerator(Factorial(n)/10^n): n in [0..30]];
-
Table[Numerator[n!/10^n], {n, 0, 30}]
A240534
a(n) = denominators of n!/10^n.
Original entry on oeis.org
1, 10, 50, 500, 1250, 2500, 12500, 125000, 156250, 1562500, 1562500, 15625000, 39062500, 390625000, 1953125000, 3906250000, 2441406250, 24414062500, 122070312500, 1220703125000, 610351562500, 6103515625000, 30517578125000
Offset: 0
-
[Denominator(Factorial(n)/10^n): n in [0..30]];
-
Table[Denominator[n!/10^n], {n, 0, 30}]
Comments