A007680 a(n) = (2n+1)*n!.
1, 3, 10, 42, 216, 1320, 9360, 75600, 685440, 6894720, 76204800, 918086400, 11975040000, 168129561600, 2528170444800, 40537905408000, 690452066304000, 12449059983360000, 236887827111936000, 4744158915944448000, 99748982335242240000
Offset: 0
Examples
G.f. = 1 + 3*x + 10*x^2 + 42*x^3 + 216*x^4 + 1320*x^5 + 9360*x^6 + ... - _Michael Somos_, Jan 01 2019
References
- H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. Wirth, Systematisches Programmieren, 1975, exercise 9.3
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Emeric Deutsch, Problem Q915, Math. Magazine, vol. 74, No. 5, 2001, p. 404.
- H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy)
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
- Eric Weisstein's World of Mathematics, Erf
- Wikipedia, Factorial base
- Wikipedia, Pidduck polynomials
- Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 5.
Crossrefs
From Johannes W. Meijer, Nov 12 2009: (Start)
Appears in A167546.
Equals the rows sums of A167556.
(End)
Programs
-
GAP
a:=List([0..20],n->(2*n+1)*Factorial(n));; Print(a); # Muniru A Asiru, Jan 01 2019
-
Magma
[(2*n+1)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 20 2011
-
Maple
[(2*n+1)*factorial(n)$n=0..20]; # Muniru A Asiru, Jan 01 2019
-
Mathematica
Table[(2n + 1)*n!, {n, 0, 20}] (* Stefan Steinerberger, Apr 08 2006 *)
-
PARI
{a(n) = if( n<0, 0, (2*n+1) * n!)}; /* Michael Somos, Mar 04 2004 */
Formula
E.g.f.: (1+x)/(1-x)^2.
This is the binomial mean transform of A000354 (after truncating the first term). See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
E.g.f.: (of aerated sequence) 1+x^2/2+sqrt(pi)*(x+x^3/4)*exp(x^2/4)*ERF(x/2). - Paul Barry, Apr 11 2010
G.f.: 1 + x*G(0), where G(k)= 1 + x*(k+1)/(1 - (k+2)/(k+2 + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
D-finite with recurrence: (-2*n+1)*a(n) +n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 27 2020
Sum_{n>=0} (-1)^n/a(n) = A347909 . - R. J. Mathar, Sep 30 2021
Comments