cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A002439 Glaisher's T numbers.

Original entry on oeis.org

1, 23, 1681, 257543, 67637281, 27138236663, 15442193173681, 11828536957233383, 11735529528739490881, 14639678925928297567703, 22427641105413135505628881, 41393949926819051111431239623, 90592214447886493688036507587681, 231969423543894989257690172433129143
Offset: 0

Views

Author

Keywords

Comments

Kashaev's invariant for the (3,2)-torus knot. See Hikami 2003. For other Kashaev invariants see A208679, A208680, and A208681. - Peter Bala, Mar 01 2012
From Peter Bala, Dec 18 2021: (Start)
Glaisher's T numbers occur in the evaluation of the L-function L(X_12,s) := Sum_{k >= 1} X_12(k)/k^s for positive even values of s, where X_12(n) = A110161(n) is a nonprincipal Dirichlet character mod 12: the result is L(X_12,2*n+2) = a(n)/(6*sqrt(3)*36^n*(2*n+1)!) * Pi^(2*n+2).
We make the following conjectures:
1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 50 begins [1, 23, 31, 43, 31, 13, 31, 33, 31, 3, 31, 23, 31, 43, 31, 13, 31, 33, 31, 3, 31, 23, ...] and appears to have a pre-period of length 1 and a period of length 10 = (1/2)*phi(50).
2) Let i >= 0 and define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k.
If true, then for each i the expansion of exp( Sum_{n >= 1} a_i(n)*x^n/n ) has integer coefficients.
3)(i) a(m*n) == a(m)^n (mod 2^k) for k = 2*v_2(m) + 7, where v_p(i) denotes the p-adic valuation of i.
(ii) a(m*n) == a(m)^n (mod 3^k) for k = 2*v_3(m) + 2.
4)(i) a(2*m*n) == a(n)^(2*m) (mod 2^k) for k = v_2(m) + 7
(ii) a((2*m+1)*n) == a(n)^(2*m+1) (mod 2^k) for k = v_2(m) + 7.
5)(i) a(3*m*n) == a(n)^(3*m) (mod 3^k) for k = v_3(m) + 2
(ii) a((3*m+1)*n) == a(n)^(3*m+1) (mod 3^k) for k = v_3(m) + 2
(iii) a((3*m+2)*n) == a(n)^(3*m+2) (mod 3^2).
6) For prime p >= 5, a((p-1)/2*n*m) == a((p-1)/2*n)^m (mod p^k) for k = v_p(m-1) + 1. (End)

Examples

			G.f. = 1 + 23*x + 1681*x^2 +257543*x^3 + 67637281*x^4 + 27138236663*x^5 + ...
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 76.
  • J. W. L. Glaisher, Messenger of Math., 28 (1898), 36-79, see esp. p. 76.
  • J. W. L. Glaisher, On the Bernoullian function, Q. J. Pure Appl. Math., 29 (1898), 1-168.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections: A156175, A156176.
Twice this sequence gives A000191. A208679, A208680, A208681.

Programs

  • Magma
    m:=32; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Sin(2*x)/(2*Cos(3*x)) )); [Factorial(2*n-1)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Jul 04 2019
    
  • Maple
    A002439 := proc(n) option remember; if n = 0 then 1; else (-4)^n-add((-9)^k*binomial(2*n+1, 2*k)*procname(n-k), k=1..n+1) ; end if; end proc:
  • Mathematica
    a[n_] := a[n] = (-4)^n - Sum[(-9)^k*Binomial[2n + 1, 2k]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Dec 05 2011, after Maple *)
    With[{nn=30},Take[CoefficientList[Series[Sin[2x]/(2Cos[3x]),{x,0,nn}], x]Range[0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Feb 05 2012 *)
    a[n_] := -(-4)^n 3^(1 + 2 n) EulerE[1 + 2 n, 1/6]  (* Bill Gosper, Oct 12 2015 *)
  • PARI
    {a(n) = my(m=n+1); if( m<2, m>0, (-4)^(m-1) - sum(k=1, m, (-9)^k * binomial(2*m-1, 2*k) * a(n-k)))}; /* Michael Somos, Dec 11 1999 */
    
  • Sage
    m = 32; T = taylor(sin(2*x)/(2*cos(3*x)), x, 0, m); [factorial(2*n+1)*T.coefficient(x, 2*n+1) for n in (0..(m-2)/2)] # G. C. Greubel, Jul 04 2019

Formula

Q_{2n+1}(sqrt(3))/sqrt(3), where the polynomials Q_n() are defined in A104035. - N. J. A. Sloane, Nov 06 2009
E.g.f.: sin(2*x)/(2*cos(3*x)) = Sum a(n)*x^(2*n+1)/(2*n+1)!.
With offset 1 instead of 0: a(1)=1, a(n)=(-4)^(n-1) - Sum_{k=1..n} (-9)^k*C(2*n-1, 2*k)*a(n-k).
a(n) = -(-4)^n*3^(2n+1)*E_{2n+1}(1/6), where E is an Euler polynomial. - Bill Gosper, Aug 08 2001, corrected Oct 12 2015.
From Peter Bala, Mar 24 2009: (Start)
Basic hypergeometric generating function: exp(-t)*Sum {n = 0..inf} Product {k = 1..n} (1-exp(-24*k*t)) = 1 + 23*t + 1681*t^2/2! + .... For other sequences with generating functions of a similar type see A000364, A000464, A002105, A079144, A158690.
a(n) = (1/2)*(-1)^(n+1)*L(-2*n-1), where L(s) is a Dirichlet L-function for a Dirichlet character with modulus 12: L(s) = 1 - 1/5^s - 1/7^s + 1/11^s + - - + .... See the Andrew's link. (End)
From Peter Bala, Jan 21 2011: (Start)
Let I = sqrt(-1) and w = exp(2*Pi*I/6). Then
a(n) = I/sqrt(3) *sum {k = 0..2*n+2} w^(n-k) *sum {j = 1..2*n+2} (-1)^(k-j) *binomial(2*n+2,k-j) *(2*j-1)^(2*n+1).
This formula can be used to obtain congruences for a(n). For example, for odd prime p we find a(p-1) = 1 (mod p) and a((p-1)/2) = (-1)^((p-1)/2) (mod p).
Cf. A002437 and A182825. (End)
a(n) = (-1)^n/(4*n+4)*12^(2*n+1)*sum {k = 1..12} X(k)*B(2*n+2,k/12), where B(n,x) is a Bernoulli polynomial and X(n) is a periodic function modulo 12 given by X(n) = 0 except for X(12*n+1) = X(12*n+11) = 1 and X(12*n+5) = X(12*n+7) = -1. - Peter Bala, Mar 01 2012
a(n) ~ n^(2*n+3/2) * 2^(4*n+3) * 3^(2*n+3/2) / (exp(2*n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, Mar 01 2014
From Peter Bala, May 11 2017: (Start)
Let X = 24*x. G.f. A(x) = 1/(1 + x - X/(1 - 2*X/(1 + x - 5*X/(1 - 7*X/(1 + x - 12*X/(1 - ...)))))) = 1 + 23*x + 1681*x^2 + ..., where the sequence [1, 2, 5, 7, 12, ...] of unsigned coefficients in the partial numerators of the continued fraction are generalized pentagonal numbers A001318.
A(x) = 1/(1 + 25*x - 2*X/(1 - X/(1 + 25*x - 7*X/(1 - 5*X/(1 + 25*x - 15*X/(1 - 12*X/(1 + 25*x - 26*X/(1 - 22*X/(1 + 25*x - ...))))))))), where the sequence [2, 1, 7, 5, 15, 12, 26, 22, ...] of unsigned coefficients in the partial numerators is obtained by swapping pairs of adjacent generalized pentagonal numbers.
G.f. as a J-fraction: A(x) = 1/(1 - 23*x - 2*X^2/(1 - 167*x - 5*7*X^2/(1 - 455*x - 12*15*X^2/(1 - 887*x - ...)))).
Let B(x) = 1/(1 - x)*A(x/(1 - x)), that is, B(x) is the binomial transform of A(x). Then B(x/24) is the o.g.f. for A079144. (End)
a(n) == 23^n ( mod (2^7)*(3^2) ). - Peter Bala, Dec 25 2021

Extensions

More terms from Michael Somos
Offset changed from 1 to 0 by N. J. A. Sloane, Dec 11 1999

A208679 Kashaev's invariant for the (5,2)-torus knot (Solomon's seal knot).

Original entry on oeis.org

1, 71, 14641, 6242711, 4555133281, 5076970085351, 8024733763147921, 17074591123571719991, 47056485265721520250561, 163059403058191163396938631, 693897612604719894794535433201
Offset: 1

Views

Author

Peter Bala, Mar 01 2012

Keywords

Comments

In general, Kashaev’s invariant for the (2*m+1,2)-torus knot has e.g.f. 1/2*sin(2*x)/cos((2*m+1)*x). Case m = 1 is A002439. For other examples see A208680 and A208681.
From Peter Bala, Dec 20 2021: (Start)
We make the following conjectures:
1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 9 begins [1, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, ...] with an apparent pre-period of length 1 and a period [8, 7, 5, 1, 2, 4] of length 6 = phi(9).
2) For i >= 0, define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k. If true, then for each i the expansion of exp(Sum_{n >= 1} a_i(n)*x^n/n) has integer coefficients. (End)

Crossrefs

Cf. A002439 ((3,2)-torus knot), A208680, A208681, A208730, A208733, A057569.

Programs

  • Maple
    A208679 := proc(n) option remember; if n = 1 then 1; else (-4)^(n-1) - add((-25)^k*binomial(2*n-1,2*k)*procname(n-k),k=1..n) ; end if; end proc:
    seq(A208679(n),n = 1..20) # Peter Bala, Dec 20 2021
    A208679 := 5*10^(2*n-2)*(-1)^n*euler(2*n-1,3/10):
    seq(A208679(n),n = 1..11); # Miles Wilson, Aug 05 2024
  • Mathematica
    nmax = 20; Table[(CoefficientList[Series[1/2*Sin[2*x]/Cos[5*x], {x, 0, 2*nmax}], x] * Range[0, 2*nmax - 1]!)[[j]], {j, 2, 2*nmax + 1, 2}] (* Vaclav Kotesovec, Aug 30 2015 *)
  • PARI
    my(x='x+O('x^30), v=Vec(serlaplace((1/2)*sin(2*x)/cos(5*x)))); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, Aug 08 2024

Formula

E.g.f.: (1/2)*sin(2*x)/cos(5*x) = x + 71*x^3/3! + 14641*x^5/5! + ....
Define F(q) := Sum_{m,n >= 0} (q^(-m*n)*product {i = 1.. m+n} (1-q^i)). For the expansion of F(1-q) and F(exp(-t)) see A208733 and A208730 respectively. Kitami gives the conjectural e.g.f. exp(-9*t)*F(exp(-40*t)) = 1 + 71*t + 14641*t^2/2! + ....
a(n) = (-1)^n/(4*n+4)*20^(2*n+1)*Sum_{k = 1..20} X(k)*B(2*n+2,k/20), where B(n,x) is a Bernoulli polynomial and X(n) is a periodic function modulo 20 given by X(n) = 0 except for X(20*n+3) = X(20*n+17) = 1 and X(20*n+7) = X(20*n+13) = -1.
a(n) = 1/2*(-1)^(n+1)*L(-2*n-1,X) in terms of the associated L-series attached to the periodic arithmetical function X.
a(n) ~ (2*n-1)! * 2^(2*n-3/2) * 5^(2*n-1) * sqrt(5-sqrt(5)) / Pi^(2*n). - Vaclav Kotesovec, Aug 30 2015
From Peter Bala, May 11 2017: (Start)
Let X = 40*x. G.f. with offset 0: A(x) = 1 + 71*x + 14641*x^2 + ... = 1/(1 + 9*x - 2*X/(1 - 3*X/(1 + 9*x - 9*X/(1 - 11*X/(1 + 9*x - 21*X/(1 - 24*X/(1 + 9*x - ...))))))), where the sequence [2, 3, 9, 11, ..., n*(5*n - 1)/2, n*(5*n + 1)/2, ...] of unsigned coefficients in the partial numerators of the continued fraction is A057569.
A(x) = 1/(1 + 49*x - 3*X/(1 - 2*X/(1 + 49*x - 11*X/(1 - 9*X/(1 + 49*x - 24*X/(1 - 21*X/(1 + 49*x - 42*X/(1 - 38*X/(1 + 49*x - ...))))))))), where the sequence [3, 2, 11, 9, 24, 21, ...] of unsigned coefficients in the partial numerators of the continued fraction is obtained by swapping pairs of adjacent terms of A057569. Let B(x) = 1/(1 - 9*x)*A(x/(1 - 9*x)), that is, B(x) is the 9_th binomial transform of A(x). Then B(x/40) = 1 + 2*x + 10*x^2 + 104*x^3 + ... is the o.g.f. for A208730. (End)
From Peter Bala, Dec 20 2021: (Start)
a(1) = 1, a(n) = (-4)^(n-1) - Sum_{k = 1..n} (-25)^k*C(2*n-1,2*k)*a(n-k).
a(n) == 71^(n-1) ( mod (2^7)*3*(5^2) ). (End)
a(n) = 5*10^(2*n - 2)*(-1)^n*E(2*n - 1, 3/10), where E(n,x) is the n-th Euler polynomial in x (A060096/A060097). - Miles Wilson, Aug 05 2024

A208680 Kashaev invariant for the (7,2)-torus knot.

Original entry on oeis.org

1, 143, 58081, 48571823, 69471000001, 151763444497103, 470164385248041121, 1960764928973430783983, 10591336845363318048877441, 71933835058256664782546056463, 599982842750416411984319126244961
Offset: 1

Views

Author

Peter Bala, Mar 01 2012

Keywords

Comments

Compare with A156370. For other Kashaev invariants see A002439 ((3,2)-torus knot), A208679 and A208681.

Crossrefs

Cf. A002439 ((3,2)-torus knot), A156370, A208679, A208681.

Formula

E.g.f.: 1/2*sin(2*x)/cos(7*x) = x + 143*x^3/3! + 58081*x^5/5! + ....
a(n) = (-1)^n/(4*n+4)*28^(2*n+1)*sum {k = 1..28} X(k)*B(2*n+2,k/28), where B(n,x) is a Bernoulli polynomial and X(n) is a periodic function modulo 28 given by X(n) = 0 except for X(28*n+5) = X(28*n+23) = 1 and X(28*n+9) = X(28*n+19) = -1.
a(n) = 1/2*(-1)^(n+1)*L(-2*n-1,X) in terms of the associated L-series attached to the periodic arithmetical function X.
From Peter Bala, May 16 2017: (Start)
O.g.f. as continued fraction: A(x) = 1/(1 + 25*x - 6*28*x/(1 - 8*28*x/(1 + 25*x -...- n*(7*n-1)*28*x/(1 - n*(7*n+1)*28*x/(1 + 25*x - ... ))))).
Also, A(x) = 1/(1 + 81*x - 8*28*x/(1 - 6*28*x/(1 + 81*x -...- n*(7*n+1)*28*x/(1 - n*(7*n-1)*28*x/(1 + 81*x - ... ))))). (End)
a(n) ~ sin(Pi/7) * 2^(4*n) * 7^(2*n-1) * n^(2*n-1/2) / (Pi^(2*n-1/2) * exp(2*n)). - Vaclav Kotesovec, May 18 2017

A208732 Sequence related to Kashaev's invariant for the (9,2)-torus knot.

Original entry on oeis.org

1, 4, 36, 664, 21276, 1050664, 73939356, 7024817944, 866058563196, 134419597387144, 25644210185987676, 5897980691609567224, 1609292585008090909116, 513950106691675965931624, 189914985024774644611299996
Offset: 0

Views

Author

Peter Bala, Mar 01 2012

Keywords

Comments

This is sequence b_n(9) in Table 2 of Hikami 2003.

Crossrefs

Formula

a(n) = (49/72)^n*sum {k = 0..n} binomial(n,k)*A208681(k+1)/49^k.
Conjectural S-fraction for the o.g.f.: 1/(1-4*x/(1-5*x/(1-17*x/(1-19*x/(1-...-1/2*n*(9*n-1)*x/(1-1/2*n*(9*n+1)*x/(1- ....

A156652 Numerator of Euler(n, 7/18).

Original entry on oeis.org

1, -1, -77, 239, 30877, -160801, -30468977, 222359759, 56025500377, -525750911041, -165532771357877, 1898604115708079, 717305800978797877, -9723130520022672481, -4285693661775748922777, 67030256200148854573199, 33765846794176822397603377
Offset: 0

Views

Author

N. J. A. Sloane, Nov 07 2009

Keywords

Comments

The (unsigned) odd-indexed terms of the sequence appear to give A208681. - Peter Bala, May 16 2017

Crossrefs

Cf. A156634 (denominators). Cf. A208681.

Programs

  • Mathematica
    Numerator[EulerE[Range[0,20],7/18]] (* Vincenzo Librandi, May 07 2012 *)

A208735 Sequence related to Kashaev's invariant for the (9,2)-torus knot.

Original entry on oeis.org

1, 4, 20, 130, 1070, 10738, 127316, 1741705, 27003335, 467906045, 8961068424, 187959552998, 4285257122545, 105513858706830, 2790444044794960
Offset: 0

Views

Author

Peter Bala, Mar 02 2012

Keywords

Comments

This is sequence a_n(9) in Table 3 of Hikami 2003.

Crossrefs

Formula

For n >=1, a(n) = 1/n!*sum {k = 1..n} |Stirling1(n,k)|*A208732(k).
Showing 1-6 of 6 results.