cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060281 Triangle T(n,k) read by rows giving number of labeled mappings (or functional digraphs) from n points to themselves (endofunctions) with exactly k cycles, k=1..n.

Original entry on oeis.org

1, 3, 1, 17, 9, 1, 142, 95, 18, 1, 1569, 1220, 305, 30, 1, 21576, 18694, 5595, 745, 45, 1, 355081, 334369, 113974, 18515, 1540, 63, 1, 6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1, 148869153, 158479488, 64727522, 13591116, 1632099, 116172, 4830, 108, 1
Offset: 1

Views

Author

Vladeta Jovovic, Apr 09 2001

Keywords

Comments

Also called sagittal graphs.
T(n,k)=1 iff n=k (counts the identity mapping of [n]). - Len Smiley, Apr 03 2006
Also the coefficients of the tree polynomials t_{n}(y) defined by (1-T(z))^(-y) = Sum_{n>=0} t_{n}(y) (z^n/n!) where T(z) is Cayley's tree function T(z) = Sum_{n>=1} n^(n-1) (z^n/n!) giving the number of labeled trees A000169. - Peter Luschny, Mar 03 2009

Examples

			Triangle T(n,k) begins:
        1;
        3,       1;
       17,       9,       1;
      142,      95,      18,      1;
     1569,    1220,     305,     30,     1;
    21576,   18694,    5595,    745,    45,    1;
   355081,  334369,  113974,  18515,  1540,   63,  1;
  6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1;
  ...
T(3,2)=9: (1,2,3)--> [(2,1,3),(3,2,1),(1,3,2),(1,1,3),(1,2,1), (1,2,2),(2,2,3),(3,2,3),(1,3,3)].
From _Peter Luschny_, Mar 03 2009: (Start)
  Tree polynomials (with offset 0):
  t_0(y) = 1;
  t_1(y) = y;
  t_2(y) = 3*y + y^2;
  t_3(y) = 17*y + 9*y^2 + y^3; (End)
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
  • W. Szpankowski. Average case analysis of algorithms on sequences. John Wiley & Sons, 2001. - Peter Luschny, Mar 03 2009

Crossrefs

Row sums: A000312.
Main diagonal and first lower diagonal give: A000012, A045943.

Programs

  • Magma
    A060281:= func< n,k | (&+[Binomial(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*StirlingFirst(j+1,k): j in [0..n-1]]) >;
    [A060281(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 06 2024
    
  • Maple
    with(combinat):T:=array(1..8,1..8):for m from 1 to 8 do for p from 1 to m do T[m,p]:=sum(binomial(m-1,k)*m^(m-1-k)*(-1)^(p+k+1)*stirling1(k+1,p),k=0..m-1); print(T[m,p]) od od; # Len Smiley, Apr 03 2006
    From Peter Luschny, Mar 03 2009: (Start)
    T := z -> sum(n^(n-1)*z^n/n!,n=1..16):
    p := convert(simplify(series((1-T(z))^(-y),z,12)),'polynom'):
    seq(print(coeff(p,z,i)*i!),i=0..8); (End)
  • Mathematica
    t=Sum[n^(n-1) x^n/n!,{n,1,10}];
    Transpose[Table[Rest[Range[0, 10]! CoefficientList[Series[Log[1/(1 - t)]^n/n!, {x, 0, 10}], x]], {n,1,10}]]//Grid (* Geoffrey Critzer, Mar 13 2011*)
    Table[k! SeriesCoefficient[1/(1 + ProductLog[-t])^x, {t, 0, k}, {x, 0, j}], {k, 10}, {j, k}] (* Jan Mangaldan, Mar 02 2013 *)
  • SageMath
    @CachedFunction
    def A060281(n,k): return sum(binomial(n-1,j)*n^(n-1-j)*stirling_number1(j+1,k) for j in range(n))
    flatten([[A060281(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Nov 06 2024

Formula

E.g.f.: 1/(1 + LambertW(-x))^y.
T(n,k) = Sum_{j=0..n-1} C(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*A008275(j+1,k) = Sum_{j=0..n-1} binomial(n-1,j)*n^(n-1-j)*s(j+1,k). [Riordan] (Note: s(m,p) denotes signless Stirling cycle number (first kind), A008275 is the signed triangle.) - Len Smiley, Apr 03 2006
T(2*n, n) = A273442(n), n >= 1. - Alois P. Heinz, May 22 2016
From Alois P. Heinz, Dec 17 2021: (Start)
Sum_{k=1..n} k * T(n,k) = A190314(n).
Sum_{k=1..n} (-1)^(k+1) * T(n,k) = A000169(n) for n>=1. (End)

A347999 Triangular array read by rows: T(n,k) is the number of endofunctions f:{1,2,...,n}-> {1,2,...,n} whose smallest connected component has exactly k nodes; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 10, 0, 17, 0, 87, 27, 0, 142, 0, 1046, 510, 0, 0, 1569, 0, 15395, 6795, 2890, 0, 0, 21576, 0, 269060, 114912, 84490, 0, 0, 0, 355081, 0, 5440463, 2332029, 1493688, 705740, 0, 0, 0, 6805296, 0, 124902874, 53389746, 32186168, 28072548, 0, 0, 0, 0, 148869153
Offset: 0

Views

Author

Steven Finch, Sep 23 2021

Keywords

Comments

Here component means weakly connected component in the functional digraph of f.
If the mapping has no component, then the smallest component is defined to have size 0.
For the statistic "length of the largest component", see A209324.

Examples

			Triangle begins:
  1;
  0,       1;
  0,       1,       3;
  0,      10,       0,      17;
  0,      87,      27,       0,    142;
  0,    1046,     510,       0,      0, 1569;
  0,   15395,    6795,    2890,      0,    0, 21576;
  0,  269060,  114912,   84490,      0,    0,     0, 355081;
  0, 5440463, 2332029, 1493688, 705740,    0,     0,      0, 6805296;
  ...
		

References

  • R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, Chapter 8.

Crossrefs

Columns k=0-1 give: A000007, A350134.
Row sums give A000312.
Right border gives A001865.
T(2n,n) gives A350135.

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
          b(n-i, min(m, i))*binomial(n-1, i-1), i=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Dec 16 2021
  • Mathematica
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
    b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*b[n - i, Min[m, i]]* Binomial[n - 1, i - 1], {i, 1, n}]];
    T[n_] := With[{p = b[n, n]},  Table[Coefficient[p, x, i], {i, 0, n}]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)

Formula

T(n,n) = A001865(n) for n >= 1.
Sum_{k=1..n} k * T(n,k) = A350157(n). - Alois P. Heinz, Dec 17 2021

Extensions

Edited by Alois P. Heinz, Dec 15 2021

A209327 Total number of nodes in the largest connected component of a functional digraph summed over all endofunctions f:{1,2,...,n}-> {1,2,...,n}.

Original entry on oeis.org

1, 7, 70, 863, 13056, 231187, 4737986, 109531991, 2835638008, 80950287311, 2533758258912, 86089196479255, 3161596017956936, 124590870125959343, 5251666647713483356, 235497961945975068767, 11205025852314462333408, 563351626162952600815087, 29864689571162209608920060, 1663796497123214306448307031
Offset: 1

Views

Author

Geoffrey Critzer, Jan 19 2013

Keywords

Comments

a(n)/n^n is the average size of the largest component.
a(n)/n^(n + 1) is the probability that a particular node is in the largest component of the digraph.

References

  • R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison and Welsey, 1996, Chapter 8.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
          b(n-i, max(m, i))*binomial(n-1, i-1), i=1..n))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*i, i=1..n))(b(n, 0)):
    seq(a(n), n=1..20);  # Alois P. Heinz, Dec 17 2021
  • Mathematica
    nn=20;g[list_]:= Sum[list[[i]]*i,{i,1,Length[list]}];t=Sum[n^(n-1)x^n/n!,{n,1,nn}];c=Log[1/(1-t)];b=Drop[Range[0,nn]!CoefficientList[Series[c,{x,0,nn}],x],1];f[list_]:=Select[list,#>0&];Map[g,Map[ f,Drop[Transpose[Table[Range[0,nn]!CoefficientList[Series[ Exp[Sum[b[[i]]x^i/i!,{i,1,n+1}]]-Exp[Sum[b[[i]]x^i/i!,{i,1,n}]],{x,0,nn}],x],{n,0,nn-1}]],1]]]

Formula

a(n) = Sum_{k=1..n} k * A209324(n,k).
Showing 1-3 of 3 results.