cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211539 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w = 2n - 2x + y.

Original entry on oeis.org

0, 0, 2, 3, 7, 9, 15, 18, 26, 30, 40, 45, 57, 63, 77, 84, 100, 108, 126, 135, 155, 165, 187, 198, 222, 234, 260, 273, 301, 315, 345, 360, 392, 408, 442, 459, 495, 513, 551, 570, 610, 630, 672, 693, 737, 759, 805, 828, 876, 900, 950, 975, 1027, 1053
Offset: 0

Views

Author

Clark Kimberling, Apr 15 2012

Keywords

Comments

For a guide to related sequences, see A211422.
a(n) = sum of natural numbers in interval (floor((n+1)/2),n]. - Jaroslav Krizek, Mar 05 2014
For n > 0, 2*a(n-1) is the sum of the largest parts of the partitions of 2n into two distinct even parts. - Wesley Ivan Hurt, Dec 19 2017
From Paul Curtz, Oct 23 2018: (Start)
Consider the 51 first nonnegative numbers in the following boustrophedon distribution:
35--36--37--38--39--40--41--42--43--44--45
34--33--32--31--30--29--28--27--26--46
12--13--14--15--16--17--18--25--47
11--10---9---8---7--19--24--48
1---2---3---6--20--23--49
0---4---5--21--22--50
a(n+1) is the union of the main vertical (0,2, 9,15, 30,40, ... ) and of the shifted main antidiagonal (3,7, 18,26, 45,57, ... ). (End)
Sum of the shortest side lengths of all integer-sided triangles with perimeter 3(n+1) whose sides lengths are in arithmetic progression (For example, when n=4 there are two triangles with perimeter 3(4+1) = 15 whose side lengths are in arithmetic progression: [3,5,7] and [4,5,6]; thus a(4) = 3+4 = 7). - Wesley Ivan Hurt, Nov 01 2020

Examples

			G.f. = 2*x^2 + 3*x^3 + 7*x^4 + 9*x^5 + 15*x^6 + 18*x^7 + ... - _Michael Somos_, Nov 14 2018
		

Crossrefs

Programs

  • GAP
    a:=[0];; for n in [2..55] do if n mod 2 = 0 then Add(a,a[n-1]+n); else Add(a,a[n-1]+(n-1)/2); fi; od; Concatenation([0],a); # Muniru A Asiru, Oct 26 2018
  • Magma
    I:=[0,0,2,3,7]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Mar 12 2014
    
  • Maple
    a:=n->add(k,k=floor((n+1)/2)+1..n): seq(a(n),n=0..55); # Muniru A Asiru, Oct 26 2018
  • Mathematica
    t[n_] := t[n] = Flatten[Table[2 w + 2 x - y - 2 n, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 70}]  (* A211539 *)
    FindLinearRecurrence[t]
    CoefficientList[Series[(x^3 + 2 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 12 2014 *)
  • PARI
    a(n)=(1/16)*(6*n^2+2*n-3+(2*n+3)*(-1)^n) \\ Ralf Stephan, Mar 10 2014
    

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
From Jaroslav Krizek, Mar 05 2014: (Start)
a(n) = T(n+1) - T(floor((n+1)/2)) - (n+1), where T(k) = A000217(k).
a(n) = Sum_{k=floor((n+1)/2)+1..n} k.
a(n) = a(n-1) + n for even n; a(n) = a(n-1) + (n-1)/2 for odd n. (End)
From Ralf Stephan, Mar 10 2014: (Start)
a(n) = (1/16) * (6n^2 + 2n - 3 + (2n+3)*(-1)^n ).
G.f.: (x^3+2x^2)/((1+x)^2*(1-x)^3). (End)
From Paul Curtz, Oct 22 2018: (Start)
a(2n) = A005449(n), a(2n+1) = A045943(n).
a(2n) + a(2n+1) = A045944(n).
a(3n) = 3*(0, 1, 5, 10, 19, 28, 42, ...).
a(n+1) = a(n) + A065423(n+2).
a(-n) = A211538(n+2). (End)
E.g.f.: (3*x*(1 + x)*cosh(x) + (-3 + 5*x + 3*x^2)*sinh(x))/8. - Stefano Spezia, Nov 02 2020
a(n) = A001318(n+1) - (n+1). - Davide Rotondo, Apr 07 2024