A211539 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w = 2n - 2x + y.
0, 0, 2, 3, 7, 9, 15, 18, 26, 30, 40, 45, 57, 63, 77, 84, 100, 108, 126, 135, 155, 165, 187, 198, 222, 234, 260, 273, 301, 315, 345, 360, 392, 408, 442, 459, 495, 513, 551, 570, 610, 630, 672, 693, 737, 759, 805, 828, 876, 900, 950, 975, 1027, 1053
Offset: 0
Examples
G.f. = 2*x^2 + 3*x^3 + 7*x^4 + 9*x^5 + 15*x^6 + 18*x^7 + ... - _Michael Somos_, Nov 14 2018
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
GAP
a:=[0];; for n in [2..55] do if n mod 2 = 0 then Add(a,a[n-1]+n); else Add(a,a[n-1]+(n-1)/2); fi; od; Concatenation([0],a); # Muniru A Asiru, Oct 26 2018
-
Magma
I:=[0,0,2,3,7]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Mar 12 2014
-
Maple
a:=n->add(k,k=floor((n+1)/2)+1..n): seq(a(n),n=0..55); # Muniru A Asiru, Oct 26 2018
-
Mathematica
t[n_] := t[n] = Flatten[Table[2 w + 2 x - y - 2 n, {w, 1, n}, {x, 1, n}, {y, 1, n}]] c[n_] := Count[t[n], 0] t = Table[c[n], {n, 0, 70}] (* A211539 *) FindLinearRecurrence[t] CoefficientList[Series[(x^3 + 2 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 12 2014 *)
-
PARI
a(n)=(1/16)*(6*n^2+2*n-3+(2*n+3)*(-1)^n) \\ Ralf Stephan, Mar 10 2014
Formula
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
From Jaroslav Krizek, Mar 05 2014: (Start)
a(n) = T(n+1) - T(floor((n+1)/2)) - (n+1), where T(k) = A000217(k).
a(n) = Sum_{k=floor((n+1)/2)+1..n} k.
a(n) = a(n-1) + n for even n; a(n) = a(n-1) + (n-1)/2 for odd n. (End)
From Ralf Stephan, Mar 10 2014: (Start)
a(n) = (1/16) * (6n^2 + 2n - 3 + (2n+3)*(-1)^n ).
G.f.: (x^3+2x^2)/((1+x)^2*(1-x)^3). (End)
From Paul Curtz, Oct 22 2018: (Start)
a(2n) + a(2n+1) = A045944(n).
a(3n) = 3*(0, 1, 5, 10, 19, 28, 42, ...).
a(n+1) = a(n) + A065423(n+2).
a(-n) = A211538(n+2). (End)
E.g.f.: (3*x*(1 + x)*cosh(x) + (-3 + 5*x + 3*x^2)*sinh(x))/8. - Stefano Spezia, Nov 02 2020
a(n) = A001318(n+1) - (n+1). - Davide Rotondo, Apr 07 2024
Comments