A265278
Expansion of (x^4+x^3-x^2+x)/(x^3+x^2-3*x+1).
Original entry on oeis.org
0, 1, 2, 6, 16, 40, 98, 238, 576, 1392, 3362, 8118, 19600, 47320, 114242, 275806, 665856, 1607520, 3880898, 9369318, 22619536, 54608392, 131836322, 318281038, 768398400, 1855077840, 4478554082, 10812186006, 26102926096, 63018038200, 152139002498, 367296043198
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Marika Diepenbroek, Monica Maus, and Alex Stoll, Pattern Avoidance in Reverse Double Lists, Preprint 2015. See Table 3.
- Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 41.
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1).
Agrees with
A213667 except for initial terms.
-
Table[2 Fibonacci[n-1, 2] + LucasL[n-1, 2]/2 + KroneckerDelta[n-1] - 1, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
LinearRecurrence[{3,-1,-1},{0,1,2,6,16},40] (* Harvey P. Dale, Mar 18 2018 *)
-
concat(0, Vec(x*(1-x+x^2+x^3)/((1-x)*(1-2*x-x^2)) + O(x^50))) \\ Colin Barker, Apr 12 2016
A065113
Sum of the squares of the a(n)-th and the (a(n)+1)st triangular numbers (A000217) is a perfect square.
Original entry on oeis.org
6, 40, 238, 1392, 8118, 47320, 275806, 1607520, 9369318, 54608392, 318281038, 1855077840, 10812186006, 63018038200, 367296043198, 2140758220992, 12477253282758, 72722761475560, 423859315570606, 2470433131948080, 14398739476117878, 83922003724759192
Offset: 1
T6 = 21 and T7 = 28, 21^2 + 28^2 = 441 + 784 = 1225 = 35^2.
-
CoefficientList[ Series[2*(x - 3)/(-1 + 7x - 7x^2 + x^3), {x, 0, 24} ], x]
LinearRecurrence[{7,-7,1},{6,40,238},41] (* Harvey P. Dale, Dec 27 2011 *)
-
a(n)=-1+subst(poltchebi(abs(n+1))-poltchebi(abs(n)),x,3)/2
-
Vec(2*x*(3-x)/((1-6*x+x^2)*(1-x)) + O(x^40)) \\ Colin Barker, Mar 05 2016
A231690
Cardinalities of the sub-operad FF_6 of the operad MFF.
Original entry on oeis.org
1, 6, 56, 640, 8158, 111258, 1588544, 23446248, 354855218, 5477342222, 85893429256, 1364577254040, 21916000458014, 355251287893170, 5804407209709312, 95493879511032240, 1580592247322440642, 26301843121772151254, 439764358275666481496, 7384252698468635017936, 124469446338979722639294
Offset: 1
-
InverseSeries[x(1 - 3x - x^2 + x^3)/(1 + 3x + x^2 - x^3) + O[x]^22] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Oct 24 2018, from PARI *)
-
N=22; x='x+O('x^N);
Vec(serreverse(Ser(x*(1-3*x-x^2+x^3)/(1+3*x+x^2-x^3)))) \\ Gheorghe Coserea, Jan 13 2017
A213666
Irregular triangle read by rows: T(n,k) is the number of dominating subsets with k vertices of the graph G(n) obtained by taking n copies of the path P_3 and identifying one of their endpoints (a star with n branches of length 2).
Original entry on oeis.org
1, 3, 1, 0, 3, 8, 5, 1, 0, 0, 7, 20, 18, 7, 1, 0, 0, 0, 15, 48, 56, 32, 9, 1, 0, 0, 0, 0, 31, 112, 160, 120, 50, 11, 1, 0, 0, 0, 0, 0, 63, 256, 432, 400, 220, 72, 13, 1, 0, 0, 0, 0, 0, 0, 127, 576, 1120, 1232, 840, 364, 98, 15, 1
Offset: 1
Row 2 is 0,3,8,5,1 because G(2) is the path P_5 abcde; no domination subset of size 1, three of size 2 (ad, bd, be), all subsets of size 3 with the exception of abc and cde are dominating (binomial(5,3)-2=8), all binomial(5,4)=5 subsets of size 4 are dominating, and abcde is dominating.
Triangle starts:
1, 3, 1;
0, 3, 8, 5, 1;
0, 0, 7, 20, 18, 7, 1;
0, 0, 0, 15, 48, 56, 32, 9, 1;
- S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
- É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
- T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, arXiv:1206.5926 [math.CO], 2012.
- Eric Weisstein's World of Mathematics, Domination Polynomial.
- Eric Weisstein's World of Mathematics, Helm Graph.
-
T := proc (n, k) if k = n then 2^n-1 else 2^(2*n-k)*(2*binomial(n, k-n-1) + binomial(n, k-n)) end if end proc: for n to 10 do seq(T(n, k), k = 1 .. 2*n+1) end d; # yields sequence in triangular form
-
T[n_, n_] := 2^n - 1;
T[n_, k_] := 2^(2*n - k)*(2*Binomial[n, k - n - 1] + Binomial[n, k - n]);
Table[T[n, k], {n, 1, 10}, {k, 1, 2*n + 1}] // Flatten (* Jean-François Alcover, Dec 02 2017 *)
A281261
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 2, 2, 1, 5, 2, 5, 9, 2, 1, 15, 14, 2, 7, 35, 20, 2, 1, 28, 70, 27, 2, 9, 84, 126, 35, 2, 1, 45, 210, 210, 44, 2, 11, 165, 462, 330, 54, 2, 1, 66, 495, 924, 495, 65, 2, 13, 286, 1287, 1716, 715, 77, 2, 1, 91, 1001, 3003, 3003, 1001, 90, 2, 15, 455, 3003, 6435, 5005, 1365, 104, 2, 1, 120, 1820, 8008, 12870, 8008, 1820, 119, 2
Offset: 1
A(x;t) = x + (2*t+2)*x^2 + (t^2+5*t+2)*x^3 + (5*t^2+9*t+2)*x^4 + ...
Triangle starts:
n\k [1] [2] [3] [4] [5] [6] [7] [8]
[1] 1;
[2] 2, 2;
[3] 1, 5, 2;
[4] 5, 9, 2;
[5] 1, 15, 14, 2;
[6] 7, 35, 20, 2;
[7] 1, 28, 70, 27, 2;
[8] 9, 84, 126, 35, 2;
[9] 1, 45, 210, 210, 44, 2;
[10] 11, 165, 462, 330, 54, 2;
[11] 1, 66, 495, 924, 495, 65, 2;
[12] 13, 286, 1287, 1716, 715, 77, 2;
[13] 1, 91, 1001, 3003, 3003, 1001, 90, 2;
[14] 15, 455, 3003, 6435, 5005, 1365, 104, 2;
[15] ...
-
Reverse[CoefficientList[#, t]]& /@ CoefficientList[x*((1-t)*x^3 + (t^2 - 2*t - 1)*x^2 + (2*t - 1)*x + 1)/((t-1)*x^3 + (3-t)*x^2 - 3*x + 1) + O[x]^16, x] // Rest // Flatten (* Jean-François Alcover, Feb 18 2019 *)
-
N=16; x='x+O('x^N); concat(apply(p->Vec(p), Vec(Ser(x*((1-t)*x^3 + (t^2-2*t-1)*x^2 + (2*t-1)*x + 1)/((t-1)*x^3 + (3-t)*x^2 - 3*x + 1)))))
-
N = 14; concat(1, concat(vector(N, n, Vec(substpol(((1+t)^(n+2) + (1-t)^(n+2))/2 - t^2 + 1, t^2, t)))))
Showing 1-5 of 5 results.
Comments