cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A009194 a(n) = gcd(n, sigma(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 28, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2
Offset: 1

Views

Author

Keywords

Comments

LCM of common divisors of n and sigma(n). It equals n if n is multiply perfect (A007691). - Labos Elemer, Aug 14 2002

Crossrefs

Programs

Formula

A000005(a(n)) = A073802(n). - Reinhard Zumkeller, Mar 12 2010
A006530(a(n)) = A082062(n). - Reinhard Zumkeller, Jul 10 2011
a(A014567(n)) = 1; A069059(a(n)) > 1. - Reinhard Zumkeller, Mar 23 2013
a(n) = n/A017666(n). - Antti Karttunen, May 22 2017

A245778 Numbers n such that k(n) = n/tau(n) - sigma(n)/n is an integer.

Original entry on oeis.org

1, 672, 4680, 30240, 435708, 23569920, 45532800, 4138364160, 14182439040, 53798734080, 153003540480, 403031236608, 518666803200
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2014

Keywords

Comments

Numbers n such that A245776(n) / A245777(n) = (n / A000005(n) - A000203(n) / n) is an integer.
Sequence of integers k(n): 0, 25, 94, 311, 4031, 73652, 118571, …
Conjecture: subsequence of A216793.
Refactorable multiply-perfect numbers (A245782) are members of this sequence.
a(14) > 10^13. - Giovanni Resta, Jul 13 2015
The numbers 13661860101120 and 740344994887680 are also terms. - Giovanni Resta, Nov 14 2019

Examples

			672 is in sequence because 672 / tau(672) - sigma(672) / 672 = 672 / 24 - 2016 / 672 = 25 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | (Denominator((n/(#[d: d in Divisors(n)])) - (SumOfDivisors(n)/n)) eq 1)]
    
  • Maple
    select(n -> type(n/numtheory:-tau(n) - numtheory:-sigma(n)/n,integer), [$1..10^8]); # Robert Israel, Aug 03 2014
  • PARI
    for(n=1,10^8,s=n/numdiv(n);t=sigma(n)/n;if(floor(s-t)==s-t,print1(n,", "))) \\ Derek Orr, Aug 01 2014

Formula

A245777(a(n)) = 1.

Extensions

a(8)-a(13) from Giovanni Resta, Jul 13 2015

A245786 Numbers n such that k(n) = (n/tau(n) + sigma(n)/n) is an integer.

Original entry on oeis.org

1, 672, 4680, 30240, 23569920, 45532800, 275890944, 14182439040, 153003540480, 403031236608, 518666803200
Offset: 1

Views

Author

Jaroslav Krizek, Aug 15 2014

Keywords

Comments

Numbers n such that A245784(n) / A245785(n) = (n / A000005(n) + A000203(n) / n) is an integer.
Sequence of numbers k(n): 2, 31, 101, 319, 73660, 118579, …
Conjecture: Subsequence of A216793.
Refactorable multiply-perfect numbers (A245782) are members of this sequence.
a(12) > 10^13. - Giovanni Resta, Jul 13 2015

Examples

			672 is in sequence because 672/tau(672) + sigma(672)/672 = 672/24 + 2016/672 = 31 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | (Denominator((n/(#[d: d in Divisors(n)])) + (SumOfDivisors(n)/n)) eq 1)]
    
  • PARI
    for(n=1, 10^8, s=n/numdiv(n); t=sigma(n)/n; if(floor(s+t)==s+t, print1(n, ", "))) \\ Derek Orr, Aug 15 2014

Formula

A245785(a(n)) = 1.

Extensions

a(7)-a(11) from Giovanni Resta, Jul 13 2015

A378267 Numbers k that have a record number of common divisors with sigma(k).

Original entry on oeis.org

1, 6, 24, 120, 672, 4320, 26208, 30240, 524160, 2178540, 8714160, 8910720, 17428320, 45532800, 132723360, 208565280, 240589440, 470564640, 668304000, 1307124000, 5228496000, 10805558400, 14182439040, 31998395520, 159991977600
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2024

Keywords

Comments

Indices of records in A073802.
This sequence is infinite since A073802 is unbounded. For example, for any odd number m we have A073802(2^(m-1)*(2^m-1)) >= A000005(m) and the number of divisors of odd numbers is unbounded.
The corresponding record values are 1, 4, 6, 16, 24, 40, 60, 96, 144, 216, 240, 336, ... .
a(26) <= 799959888000.

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{d, dmax = 0, s = {}}, Do[d = DivisorSigma[0, GCD[k, DivisorSigma[1, k]]]; If[d > dmax, dmax = d; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^6]
  • PARI
    lista(kmax) = {my(d, dmax = 0); for(k = 1, kmax, d = numdiv(gcd(k, sigma(k))); if(d > dmax, dmax = d; print1(k, ", ")));}
Showing 1-4 of 4 results.