cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A131835 Numbers starting with 1.

Original entry on oeis.org

1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142
Offset: 1

Views

Author

Andrew Good (yipes_stripes(AT)yahoo.com), Jul 20 2007

Keywords

Comments

The lower and upper asymptotic densities of this sequence are 1/9 and 5/9, respectively. - Amiram Eldar, Feb 27 2021

Crossrefs

Subsequence of A011531.
Disjoint union of A045707 and A206286.
Cf. A000030, A000027, A002275, A262390 (permutation).

Programs

  • Haskell
    a131835 n = a131835_list !! (n-1)
    a131835_list = concat $
                   iterate (concatMap (\x -> map (+ 10 * x) [0..9])) [1]
    -- Reinhard Zumkeller, Jul 16 2014
    
  • Maple
    isA131835 := proc(n) if op(-1,convert(n,base,10)) = 1 then true; else false ; fi ; end: for n from 1 to 300 do if isA131835(n) then printf("%d, ",n) ; fi ; od : # R. J. Mathar, Jul 24 2007
  • Mathematica
    Select[Range[150], IntegerDigits[#][[1]] == 1 &] (* Amiram Eldar, Feb 27 2021 *)
  • PARI
    a(n, {base=10}) = my (o=1); while (n>o, n-=o; o*=base); return (o+n-1) \\ Rémy Sigrist, Jun 23 2017
    
  • PARI
    a(n) = n--; s = #digits(9*n+1); n + 8 * (10^(s-1))/9 + 1/9 \\ David A. Corneth, Jun 23 2017
    
  • PARI
    nxt(n) = my(d = digits(n+1)); if(d[1]==1, n+1, 10^#d) \\ David A. Corneth, Jun 23 2017
    
  • Python
    def A131835(n): return n+(10**(len(str(9*n-8))-1)<<3)//9 # Chai Wah Wu, Dec 07 2024

Formula

A000030(a(n)) = 1. - Reinhard Zumkeller, Jul 16 2014
a(A002275(n)+1) = 10^n for any n >= 0. - Rémy Sigrist, Jun 23 2017
a(n) = n + (8*10^floor(log_10(9*n-8))-8)/9. - Alan Michael Gómez Calderón, May 16 2023

Extensions

More terms from R. J. Mathar, Jul 24 2007

A217398 Numbers starting with 5.

Original entry on oeis.org

5, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542
Offset: 1

Views

Author

Jeremy Gardiner, Oct 02 2012

Keywords

Comments

The lower and upper asymptotic densities of this sequence are 1/45 and 5/27, respectively. - Amiram Eldar, Feb 27 2021
Also numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 5. - Stefano Spezia, Jul 08 2025

Crossrefs

Programs

  • Haskell
    a217398 n = a217398_list !! (n-1)
    a217398_list = filter ((== 5) . a000030) [1..]
    -- Reinhard Zumkeller, Mar 13 2014
    
  • Mathematica
    Select[Range[1000], IntegerDigits[#][[1]] == 5 &] (* T. D. Noe, Oct 02 2012 *)
  • Python
    def A217398(n): return n+(44*10**(len(str(9*n-8))-1))//9 # Chai Wah Wu, Dec 07 2024

Formula

A000030(a(n)) = 5; A143473(a(n)) = a(n). - Reinhard Zumkeller, Mar 13 2014
a(n) = n + (44*10^floor(log_10(9*n-8))-8)/9. - Alan Michael Gómez Calderón, May 17 2023

A217394 Numbers starting with 2.

Original entry on oeis.org

2, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242
Offset: 1

Views

Author

Jeremy Gardiner, Oct 02 2012

Keywords

Comments

The lower and upper asymptotic densities of this sequence are 1/18 and 10/27, respectively. - Amiram Eldar, Feb 27 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[300], IntegerDigits[#][[1]] == 2 &] (* T. D. Noe, Oct 02 2012 *)
  • Python
    def agen():
      yield 2
      digits, adder = 1, 20
      while True:
        for i in range(10**digits): yield adder + i
        digits, adder = digits+1, adder*10
    g = agen()
    print([next(g) for i in range(54)]) # Michael S. Branicky, Feb 20 2021
    
  • Python
    def A217394(n): return n+(17*10**(len(str(9*n-8))-1))//9 # Chai Wah Wu, Dec 07 2024

Formula

a(n) = n + (17*10^floor(log_10(9*n-8))-8)/9. - Alan Michael Gómez Calderón, May 15 2023

A217399 Numbers starting with 6.

Original entry on oeis.org

6, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642
Offset: 1

Views

Author

Jeremy Gardiner, Oct 02 2012

Keywords

Comments

The lower and upper asymptotic densities of this sequence are 1/54 and 10/63, respectively. - Amiram Eldar, Feb 27 2021

Crossrefs

Programs

  • GAP
    Flat(List([0..2],n->List([0..10^n-1],k->6*10^n+k))); # Muniru A Asiru, Nov 21 2018
    
  • Magma
    [n: n in [1..1600] | Intseq(n)[#Intseq(n)] eq 6]; // Vincenzo Librandi, Nov 24 2018
    
  • Maple
    seq(seq(6*10^n+k, k=0..10^n-1),n=0..3); # Robert Israel, May 08 2017
  • Mathematica
    Select[Range[1000], IntegerDigits[#][[1]] == 6 &] (* T. D. Noe, Oct 02 2012 *)
  • PARI
    isok(n) = digits(n)[1] == 6; \\ Michel Marcus, May 08 2017
    
  • Python
    def A217399(n): return n+(53*10**(len(str(9*n-8))-1))//9 # Chai Wah Wu, Dec 07 2024

Formula

a(n) = n + (53*10^floor(log_10(9*n-8))-8)/9. - Alan Michael Gómez Calderón, May 17 2023

A077683 Squarefree numbers beginning with 7.

Original entry on oeis.org

7, 70, 71, 73, 74, 77, 78, 79, 701, 703, 705, 706, 707, 709, 710, 713, 714, 715, 717, 718, 719, 721, 723, 727, 730, 731, 733, 734, 737, 739, 741, 742, 743, 745, 746, 749, 751, 753, 754, 755, 757, 758, 759, 761, 762, 763, 766, 767, 769, 770, 771, 773, 777, 778
Offset: 1

Views

Author

Amarnath Murthy, Nov 16 2002

Keywords

Comments

Lower density is 3/(35*Pi^2), upper density is 5/(6*Pi^2). - Charles R Greathouse IV, Nov 05 2017

Crossrefs

Programs

Extensions

More terms from Sascha Kurz, Jan 28 2003

A217397 Numbers starting with 4.

Original entry on oeis.org

4, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442
Offset: 1

Views

Author

Jeremy Gardiner, Oct 02 2012

Keywords

Comments

The lower and upper asymptotic densities of this sequence are 1/36 and 2/9, respectively. - Amiram Eldar, Feb 27 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], IntegerDigits[#][[1]] == 4 &] (* T. D. Noe, Oct 02 2012 *)
  • Python
    def A217397(n): return n+(35*10**(len(str(9*n-8))-1))//9 # Chai Wah Wu, Dec 07 2024

Formula

a(n) = n + (35*10^floor(log_10(9*n-8))-8)/9. - Alan Michael Gómez Calderón, May 17 2023

A217401 Numbers starting with 8.

Original entry on oeis.org

8, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842
Offset: 1

Views

Author

Jeremy Gardiner, Oct 02 2012

Keywords

Comments

The lower and upper asymptotic densities of this sequence are 1/72 and 10/81, respectively. - Amiram Eldar, Feb 27 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], IntegerDigits[#][[1]] == 8 &] (* T. D. Noe, Oct 02 2012 *)
  • Python
    def A217401(n): return n+(71*10**(len(str(9*n-8))-1))//9 # Chai Wah Wu, Dec 07 2024

Formula

a(n) = n + (71*10^floor(log_10(9*n-8))-8)/9. - Alan Michael Gómez Calderón, May 17 2023

A217402 Numbers starting with 9.

Original entry on oeis.org

9, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942
Offset: 1

Views

Author

Jeremy Gardiner, Oct 02 2012

Keywords

Comments

The lower and upper asymptotic densities of this sequence are 1/81 and 1/9, respectively. - Amiram Eldar, Feb 27 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], IntegerDigits[#][[1]] == 9 &] (* T. D. Noe, Oct 02 2012 *)
  • Python
    def A217402(n): return n+(80*10**(len(str(9*n-8))-1))//9 # Chai Wah Wu, Dec 07 2024

Formula

a(n) = n + (80*10^floor(log_10(9*n-8))-8)/9. - Alan Michael Gómez Calderón, May 17 2023

A217395 Numbers starting with 3.

Original entry on oeis.org

3, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342
Offset: 1

Views

Author

Jeremy Gardiner, Oct 02 2012

Keywords

Comments

The lower and upper asymptotic densities of this sequence are 1/27 and 5/18, respectively. - Amiram Eldar, Feb 27 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], IntegerDigits[#][[1]] == 3 &] (* T. D. Noe, Oct 02 2012 *)
  • PARI
    a(n) = n + 26*10^logint(9*n,10)\9; \\ Kevin Ryde, Mar 30 2021
  • Python
    def agen():
      yield 3
      digits, adder = 1, 30
      while True:
        for i in range(10**digits): yield adder + i
        digits, adder = digits+1, adder*10
    g = agen()
    print([next(g) for i in range(54)]) # Michael S. Branicky, Mar 30 2021
    
  • Python
    def A217395(n): return n+26*10**(len(str(9*n-8))-1)//9 # Chai Wah Wu, Sep 11 2024
    

Formula

a(n) = n + (26*10^floor(log_10(9*n-8))-8)/9. - Alan Michael Gómez Calderón, May 16 2023

A320863 Powers of 2 with initial digit 7.

Original entry on oeis.org

70368744177664, 72057594037927936, 73786976294838206464, 75557863725914323419136, 77371252455336267181195264, 79228162514264337593543950336, 713623846352979940529142984724747568191373312, 730750818665451459101842416358141509827966271488
Offset: 1

Views

Author

Muniru A Asiru, Oct 26 2018

Keywords

Crossrefs

Cf. A000079 (powers of 2), A008952 (leading digit of 2^n), A217400 (numbers starting with 7).
Powers of 2 with initial digit k, (k = 1..7): A067488, A067480, A320859, A320860, A320861, A320862, this sequence.

Programs

  • GAP
    Filtered(List([0..180],n->2^n),i->ListOfDigits(i)[1]=7);
    
  • Magma
    [2^n: n in [1..160] | Intseq(2^n)[#Intseq(2^n)] eq 7]; // G. C. Greubel, Oct 27 2018
  • Maple
    select(x->"7"=""||x[1],[2^n$n=0..180])[];
  • Mathematica
    Select[2^Range[160], First[IntegerDigits[#]] == 7 &] (* G. C. Greubel, Oct 27 2018 *)
  • PARI
    select(x->(digits(x)[1]==7), vector(200, n, 2^n)) \\ Michel Marcus, Oct 27 2018
    
Showing 1-10 of 11 results. Next