A131865
Partial sums of powers of 16.
Original entry on oeis.org
1, 17, 273, 4369, 69905, 1118481, 17895697, 286331153, 4581298449, 73300775185, 1172812402961, 18764998447377, 300239975158033, 4803839602528529, 76861433640456465, 1229782938247303441, 19676527011956855057, 314824432191309680913, 5037190915060954894609
Offset: 0
a(3) = 1 + 16 + 256 + 4096 = 4369 = in binary: 1000100010001.
a(4) = (16^5 - 1)/15 = (4^5 + 1) * (4^5 - 1)/15 = 1025 * 1023/15 = 205 * 341 = 69905 = 11111_16. - _Bernard Schott_, Jun 06 2017
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Kival Ngaokrajang, Illustration of initial terms
- Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1. See Table 1.
- Simon Plouffe, Identities and approximations inspired from Ramanujan notebooks, III, 2009.
- Index entries related to partial sums.
- Index entries related to q-numbers.
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
Cf.
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723. -
M. F. Hasler, Nov 05 2012
-
[(16^(n+1)-1)/15: n in [0..20]]; // Vincenzo Librandi, Sep 17 2011
-
A131865:=n->(16^(n+1)-1)/15: seq(A131865(n), n=0..30); # Wesley Ivan Hurt, Apr 29 2017
-
Table[(2^(4 n) - 1)/15, {n, 16}] (* Robert G. Wilson v, Aug 22 2007 *)
Accumulate[16^Range[0,20]] (* or *) LinearRecurrence[{17,-16},{1,17},20] (* Harvey P. Dale, Jul 19 2019 *)
-
a[0]:0$
a[n]:=16*a[n-1]+1$
A131865(n):=a[n]$
makelist(A131865(n),n,1,30); /* Martin Ettl, Nov 05 2012 */
-
A131865(n)=16^n\15 \\ M. F. Hasler, Nov 05 2012
-
def A131865(n): return (1<<(n+1<<2))//15 # Chai Wah Wu, Nov 10 2022
-
[gaussian_binomial(n,1,16) for n in range(1,18)] # Zerinvary Lajos, May 28 2009
A218722
a(n) = (19^n-1)/18.
Original entry on oeis.org
0, 1, 20, 381, 7240, 137561, 2613660, 49659541, 943531280, 17927094321, 340614792100, 6471681049901, 122961939948120, 2336276859014281, 44389260321271340, 843395946104155461, 16024522975978953760, 304465936543600121441
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 20*Self(n-1)-19*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{20, -19}, {0, 1}, 40] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218722(n):=(19^n-1)/18$ makelist(A218722(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A218722(n)=19^n\18
A218724
a(n) = (21^n - 1)/20.
Original entry on oeis.org
0, 1, 22, 463, 9724, 204205, 4288306, 90054427, 1891142968, 39714002329, 833994048910, 17513875027111, 367791375569332, 7723618886955973, 162195996626075434, 3406115929147584115, 71528434512099266416, 1502097124754084594737, 31544039619835776489478
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218725-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 22*Self(n-1) - 21*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{22, -21}, {0, 1}, 40] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218724(n):=(21^n-1)/20$ makelist(A218724(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A218724(n)=21^n\20
A218734
a(n) = (31^n - 1)/30.
Original entry on oeis.org
0, 1, 32, 993, 30784, 954305, 29583456, 917087137, 28429701248, 881320738689, 27320942899360, 846949229880161, 26255426126284992, 813918209914834753, 25231464507359877344, 782175399728156197665, 24247437391572842127616, 751670559138758105956097
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See pp. 2, 17.
- Index entries related to partial sums.
- Index entries for linear recurrences with constant coefficients, signature (32,-31).
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218733,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 32*Self(n-1)-31*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{32, -31}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218734(n):=(31^n-1)/30$
makelist(A218734(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
a(n)=31^n\30
A132469
a(n) = (2^(5*n) - 1)/31.
Original entry on oeis.org
0, 1, 33, 1057, 33825, 1082401, 34636833, 1108378657, 35468117025, 1134979744801, 36319351833633, 1162219258676257, 37191016277640225, 1190112520884487201, 38083600668303590433, 1218675221385714893857, 38997607084342876603425, 1247923426698972051309601
Offset: 0
- A. K. Devaraj, "Minimum Universal Exponent Generalisation of Fermat's Theorem", in ISSN #1550-3747, Proceedings of Hawaii Intl Conference on Statistics, Mathematics & Related Fields, 2004.
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 33*Self(n-1) - 32*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Table[(2^(5 n) - 1)/31, {n, 16}] (* Robert G. Wilson v *)
LinearRecurrence[{33, -32}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A132469(n):=(32^n-1)/31$
makelist(A132469(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A132469(n)=32^n\31 \\ M. F. Hasler, Nov 07 2012
-
[gaussian_binomial(5*n,1,2)/31 for n in range(1,17)] # Zerinvary Lajos, May 28 2009
Edited and extended to offset 0 by
M. F. Hasler, Nov 05 2012
A218753
a(n) = (49^n - 1)/48.
Original entry on oeis.org
0, 1, 50, 2451, 120100, 5884901, 288360150, 14129647351, 692352720200, 33925283289801, 1662338881200250, 81454605178812251, 3991275653761800300, 195572507034328214701, 9583052844682082520350, 469569589389422043497151, 23008909880081680131360400
Offset: 0
Cf.
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218752,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 50*Self(n-1) - 49*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
LinearRecurrence[{50, -49}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
Join[{0},Accumulate[49^Range[0,20]]] (* Harvey P. Dale, Apr 14 2023 *)
-
A218753(n):=floor(49^n/48)$ makelist(A218753(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A218753(n)=49^n\48
A218736
a(n) = (33^n - 1)/32.
Original entry on oeis.org
0, 1, 34, 1123, 37060, 1222981, 40358374, 1331826343, 43950269320, 1450358887561, 47861843289514, 1579440828553963, 52121547342280780, 1720011062295265741, 56760365055743769454, 1873092046839544391983, 61812037545704964935440, 2039797239008263842869521
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218737-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 34*Self(n-1)-33*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{34, -33}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218736(n):=(33^n-1)/32$
makelist(A218736(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A218736(n)=33^n>>5
A218750
a(n) = (47^n - 1)/46.
Original entry on oeis.org
0, 1, 48, 2257, 106080, 4985761, 234330768, 11013546097, 517636666560, 24328923328321, 1143459396431088, 53742591632261137, 2525901806716273440, 118717384915664851681, 5579717091036248029008, 262246703278703657363377, 12325595054099071896078720
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 48*Self(n-1) - 47*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
Table[(47^n - 1)/46, {n, 0, 19}] (* Alonso del Arte, Nov 04 2012 *)
LinearRecurrence[{48, -47}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
-
A218750(n):=(47^n-1)/46$ makelist(A218750(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218750(n)=47^n\46
A218726
a(n) = (23^n - 1)/22.
Original entry on oeis.org
0, 1, 24, 553, 12720, 292561, 6728904, 154764793, 3559590240, 81870575521, 1883023236984, 43309534450633, 996119292364560, 22910743724384881, 526947105660852264, 12119783430199602073, 278755018894590847680, 6411365434575589496641, 147461404995238558422744
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 24*Self(n-1)-23*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{24, -23}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(23^Range[0,20]-1)/22 (* Harvey P. Dale, Nov 09 2012 *)
-
A218726(n):=(23^n-1)/22$
makelist(A218726(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218726(n)=23^n\22
A218732
a(n) = (29^n - 1)/28.
Original entry on oeis.org
0, 1, 30, 871, 25260, 732541, 21243690, 616067011, 17865943320, 518112356281, 15025258332150, 435732491632351, 12636242257338180, 366451025462807221, 10627079738421409410, 308185312414220872891, 8937374060012405313840, 259183847740359754101361
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 30*Self(n-1)-29*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{30, -29}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218732(n):=(29^n-1)/28$
makelist(A218732(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
a(n)=29^n\28
Showing 1-10 of 34 results.
Comments