cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A220086 Decimal expansion of Gamma(1/7).

Original entry on oeis.org

6, 5, 4, 8, 0, 6, 2, 9, 4, 0, 2, 4, 7, 8, 2, 4, 4, 3, 7, 7, 1, 4, 0, 9, 3, 3, 4, 9, 4, 2, 8, 9, 9, 6, 2, 6, 2, 6, 2, 1, 1, 3, 5, 1, 8, 7, 3, 8, 4, 1, 3, 5, 1, 4, 8, 9, 4, 0, 1, 6, 8, 8, 1, 9, 1, 4, 8, 5, 7, 6, 2, 0, 4, 7, 3, 8, 2, 3, 9, 1, 3, 7, 7, 9, 0, 5, 6
Offset: 1

Views

Author

Bruno Berselli, Dec 12 2012

Keywords

Comments

(A220086/A220605)*(A220607/A220606) = A160389, which is the case n=7 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n).
A220086*A220605*A220606*A220607*A220608*A220609 = (2*Pi)^3/sqrt(7), which is the case n=7 of product(Gamma(i/n), i=1..n-1) = sqrt((2*Pi)^(n-1)/n) (see also the second link to Wikipedia).
Continued fraction expansion: 6, 1, 1, 4, 1, 2, 2, 1, 5, 1, 10, 7, 1,...

Examples

			6.5480629402478244377140933494289962626211351873841351...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/7); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[Gamma[1/7], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(gamma(1/7)));
    
  • PARI
    default(realprecision, 100); gamma(1/7) \\ G. C. Greubel, Mar 10 2018
    

Formula

Equals Pi * csc(Pi/7) / A220607, where csc is the cosecant function.
(A220086/A220605) * (A220607/A220606) = A160389, which is the case n=7 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n).
A220086*A220605*A220606*A220607*A220608*A220609 = (2*Pi)^3/sqrt(7), which is the case n=7 of product(Gamma(i/n), i=1..n-1) = sqrt((2*Pi)^(n-1)/n) (see also the second link to Wikipedia).

A216703 a(n) = Product_{k=1..n} (49 - 7/k).

Original entry on oeis.org

1, 42, 1911, 89180, 4213755, 200574738, 9594158301, 460519598448, 22162505675310, 1068725273676060, 51619430718553698, 2496503376570051576, 120872371815599997138, 5857661095679076784380, 284096563140435224042430, 13788153197749122873525936
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(49-7/k, k=1.. n), n=0..20);
    seq((7^n/n!)*product(7*k+6, k=0.. n-1), n=0..20);
  • Mathematica
    Table[49^n * Pochhammer[6/7, n] / n!, {n, 0, 15}] (* Amiram Eldar, Aug 17 2025 *)

Formula

From Seiichi Manyama, Jul 17 2025: (Start)
G.f.: 1/(1 - 49*x)^(6/7).
a(n) = (-49)^n * binomial(-6/7,n).
a(n) = 7^n/n! * Product_{k=0..n-1} (7*k+6). (End)
From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 49^n * Gamma(n+6/7) / (Gamma(6/7) * Gamma(n+1)).
a(n) ~ c * 49^n / n^(1/7), where c = 1/Gamma(6/7) = 1/A220607 = 0.904349... . (End)

A020074 a(n) = floor( Gamma(n+6/7)/Gamma(6/7) ).

Original entry on oeis.org

1, 0, 1, 4, 17, 85, 499, 3422, 26888, 238157, 2347553, 25487720, 302211542, 3885576978, 53842995267, 799953072548, 12684970150410, 213832353964066, 3818434892215473, 72004772253206072, 1429809049027949159
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Gamma(n+6/7)/Gamma(6/7)): n in [0..25]]; // G. C. Greubel, Nov 17 2019
    
  • Maple
    Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
    seq(floor(pochhammer(6/7,n)), n = 0..25); # G. C. Greubel, Nov 17 2019
  • Mathematica
    Floor[Pochhammer[6/7, Range[0, 25]]] (* G. C. Greubel, Nov 17 2019 *)
  • PARI
    vector(26, n, my(x=6/7); gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Nov 17 2019
    
  • Sage
    [floor(rising_factorial(6/7, n)) for n in (0..25)] # G. C. Greubel, Nov 17 2019

A025752 7th-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 21, 637, 22295, 842751, 33429123, 1370594043, 57564949806, 2462500630590, 106872527367606, 4692675519868518, 208041948047504298, 9297874755046153626, 418404363977076913170, 18939770876029014936162, 861759574859320179595371, 39387481745040692914447251
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(8 - (1 - 49*x)^(1/7))/7, {x, 0, 20}], x] (* Vincenzo Librandi, Dec 29 2012 *)
    a[n_] := 49^(n-1) * Pochhammer[6/7, n-1]/n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Aug 20 2025 *)

Formula

G.f.: (8-(1-49*x)^(1/7))/7.
a(n) = 7^(n-1)*6*A034833(n-1)/n!, n >= 2, where 6*A034833(n-1)= (7*n-8)(!^7) = Product_{j=2..n} (7*j - 8). - Wolfdieter Lang
a(n) ~ 49^(n-1) / (Gamma(6/7) * n^(8/7)). - Amiram Eldar, Aug 20 2025

A020119 Ceiling of GAMMA(n+6/7)/GAMMA(6/7).

Original entry on oeis.org

1, 1, 2, 5, 18, 86, 500, 3423, 26889, 238158, 2347554, 25487721, 302211543, 3885576979, 53842995268, 799953072549, 12684970150411, 213832353964067, 3818434892215474, 72004772253206073, 1429809049027949160
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A220607.

Programs

  • Maple
    Digits := 64:f := proc(n,x) ceil(GAMMA(n+x)/GAMMA(x)); end;

A020029 Nearest integer to Gamma(n + 6/7)/Gamma(6/7).

Original entry on oeis.org

1, 1, 2, 5, 18, 85, 499, 3422, 26889, 238158, 2347553, 25487720, 302211543, 3885576978, 53842995268, 799953072548, 12684970150411, 213832353964067, 3818434892215474, 72004772253206073, 1429809049027949160
Offset: 0

Views

Author

Keywords

Comments

Gamma(n + 6/7)/Gamma(6/7) = 1, 6/7, 78/49, 1560/343, 42120/2401, 1432080/16807, 58715280/117649, ... - R. J. Mathar, Sep 04 2016

Crossrefs

Programs

  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
  • Mathematica
    Table[Round[Gamma[n+6/7]/Gamma[6/7]],{n,0,20}] (* Harvey P. Dale, Dec 16 2023 *)
Showing 1-6 of 6 results.