cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A222415 a(n) = max{A222416(q): q in P(n)}, where P(n) is the set of integers defined in Defn. 2.6 of Nussbaum and Verduyn Lunel (2003).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 11, 11, 13, 13, 16, 16, 18, 18, 26, 26, 26, 26, 31, 31, 32, 32, 35, 35, 37, 43, 43, 43, 47, 47, 58, 58, 59, 59, 60, 60, 61, 64, 64, 66, 66, 66, 70, 71, 71, 72, 75, 75, 75, 77, 79, 79, 84, 84, 84, 84, 84, 85, 87, 88, 89, 90, 122, 122, 127, 127, 131, 131, 131, 131, 131, 131, 131, 131, 133, 134, 144, 144, 146
Offset: 1

Views

Author

N. J. A. Sloane, Feb 28 2013

Keywords

Comments

See Nussbaum and Verduyn Lunel (2003) for precise definition.

Crossrefs

A008475 If n = Product (p_j^k_j) then a(n) = Sum (p_j^k_j) (a(1) = 0 by convention).

Original entry on oeis.org

0, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 7, 13, 9, 8, 16, 17, 11, 19, 9, 10, 13, 23, 11, 25, 15, 27, 11, 29, 10, 31, 32, 14, 19, 12, 13, 37, 21, 16, 13, 41, 12, 43, 15, 14, 25, 47, 19, 49, 27, 20, 17, 53, 29, 16, 15, 22, 31, 59, 12, 61, 33, 16, 64, 18, 16, 67, 21, 26, 14, 71, 17, 73
Offset: 1

Views

Author

Keywords

Comments

For n>1, a(n) is the minimal number m such that the symmetric group S_m has an element of order n. - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 26 2001
If gcd(u,w) = 1, then a(u*w) = a(u) + a(w); behaves like logarithm; compare A001414 or A056239. - Labos Elemer, Mar 31 2003

Examples

			a(180) = a(2^2 * 3^2 * 5) = 2^2 + 3^2 + 5 = 18.
		

References

  • F. J. Budden, The Fascination of Groups, Cambridge, 1972; pp. 322, 573.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 147.
  • T. Z. Xuan, On some sums of large additive number theoretic functions (in Chinese), Journal of Beijing normal university, No. 2 (1984), pp. 11-18.

Crossrefs

Programs

  • Haskell
    a008475 1 = 0
    a008475 n = sum $ a141809_row n
    -- Reinhard Zumkeller, Jan 29 2013, Oct 10 2011
    
  • Maple
    A008475 := proc(n) local e,j; e := ifactors(n)[2]:
    add(e[j][1]^e[j][2], j=1..nops(e)) end:
    seq(A008475(n), n=1..60); # Peter Luschny, Jan 17 2010
  • Mathematica
    f[n_] := Plus @@ Power @@@ FactorInteger@ n; f[1] = 0; Array[f, 73]
  • PARI
    for(n=1,100,print1(sum(i=1,omega(n), component(component(factor(n),1),i)^component(component(factor(n),2),i)),","))
    
  • PARI
    a(n)=local(t);if(n<1,0,t=factor(n);sum(k=1,matsize(t)[1],t[k,1]^t[k,2])) /* Michael Somos, Oct 20 2004 */
    
  • PARI
    A008475(n) = { my(f=factor(n)); vecsum(vector(#f~,i,f[i,1]^f[i,2])); }; \\ Antti Karttunen, Nov 17 2017
    
  • Python
    from sympy import factorint
    def a(n):
        f=factorint(n)
        return 0 if n==1 else sum([i**f[i] for i in f]) # Indranil Ghosh, May 20 2017

Formula

Additive with a(p^e) = p^e.
a(A000961(n)) = A000961(n); a(A005117(n)) = A001414(A005117(n)).
a(n) = Sum_{k=1..A001221(n)} A027748(n,k) ^ A124010(n,k) for n>1. - Reinhard Zumkeller, Oct 10 2011
a(n) = Sum_{k=1..A001221(n)} A141809(n,k) for n > 1. - Reinhard Zumkeller, Jan 29 2013
Sum_{k=1..n} a(k) ~ (Pi^2/12)* n^2/log(n) + O(n^2/log(n)^2) (Xuan, 1984). - Amiram Eldar, Mar 04 2021

A304037 If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^k_j), where pi() = A000720.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 4, 4, 5, 3, 6, 5, 5, 1, 7, 5, 8, 4, 6, 6, 9, 3, 9, 7, 8, 5, 10, 6, 11, 1, 7, 8, 7, 5, 12, 9, 8, 4, 13, 7, 14, 6, 7, 10, 15, 3, 16, 10, 9, 7, 16, 9, 8, 5, 10, 11, 17, 6, 18, 12, 8, 1, 9, 8, 19, 8, 11, 8, 20, 5, 21, 13, 11, 9, 9, 9, 22, 4, 16, 14, 23, 7, 10, 15, 12, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, May 05 2018

Keywords

Examples

			a(72) = 5 because 72 = 2^3*3^2 = prime(1)^3*prime(2)^2 and 1^3 + 2^2 = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ (PrimePi[#[[1]]]^#[[2]]& /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 1, 88}]

Formula

If gcd(u,v) = 1 then a(u*v) = a(u) + a(v).
a(p^k) = A000720(p)^k where p is a prime.
a(A002110(m)^k) = 1^k + 2^k + ... + m^k.
As an example:
a(A000040(k)) = k.
a(A006450(k)) = A000040(k).
a(A038580(k)) = A006450(k).
a(A001248(k)) = a(A011757(k)) = A000290(k).
a(A030078(k)) = a(A055875(k)) = A000578(k).
a(A002110(k)) = a(A011756(k)) = A000217(k).
a(A061742(k)) = A000330(k).
a(A115964(k)) = A000537(k).
a(A080696(k)) = A007504(k).
a(A076954(k)) = A001923(k).

A304251 If n = Product (p_j^k_j) then a(n) = Sum (prime(p_j)^k_j).

Original entry on oeis.org

0, 3, 5, 9, 11, 8, 17, 27, 25, 14, 31, 14, 41, 20, 16, 81, 59, 28, 67, 20, 22, 34, 83, 32, 121, 44, 125, 26, 109, 19, 127, 243, 36, 62, 28, 34, 157, 70, 46, 38, 179, 25, 191, 40, 36, 86, 211, 86, 289, 124, 64, 50, 241, 128, 42, 44, 72, 112, 277, 25, 283, 130, 42, 729, 52, 39, 331, 68, 88, 31
Offset: 1

Views

Author

Ilya Gutkovskiy, May 09 2018

Keywords

Examples

			a(12) = 14 because 12 = 2^2*3 and prime(2)^2 + prime(3) = 3^2 + 5 = 14.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
       add(ithprime(t[1])^t[2],t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 25 2024
  • Mathematica
    a[n_] := Plus @@ (Prime[#[[1]]]^#[[2]] & /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 70}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, prime(f[k,1])^f[k,2]); \\ Michel Marcus, May 09 2018

Formula

a(prime(i)^k) = prime(prime(i))^k.
a(A000040(k)) = A006450(k).
a(A006450(k)) = A038580(k).
a(A002110(k)) = A083186(k).

A286875 If n = Product (p_j^k_j) then a(n) = Sum (k_j >= 2, p_j^k_j).

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 8, 9, 0, 0, 4, 0, 0, 0, 16, 0, 9, 0, 4, 0, 0, 0, 8, 25, 0, 27, 4, 0, 0, 0, 32, 0, 0, 0, 13, 0, 0, 0, 8, 0, 0, 0, 4, 9, 0, 0, 16, 49, 25, 0, 4, 0, 27, 0, 8, 0, 0, 0, 4, 0, 0, 9, 64, 0, 0, 0, 4, 0, 0, 0, 17, 0, 0, 25, 4, 0, 0, 0, 16, 81, 0, 0, 4, 0, 0, 0, 8, 0, 9, 0, 4, 0, 0, 0, 32, 0, 49, 9, 29, 0, 0, 0, 8, 0, 0, 0, 31
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 02 2017

Keywords

Comments

Sum of unitary, proper prime power divisors of n.

Examples

			a(360) = a(2^3*3^2*5) = 2^3 + 3^2 = 17.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] && PrimePowerQ[#] && !PrimeQ[#] &], {n, 108}]
    f[p_, e_] := If[e == 1, 0, p^e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    A286875(n) = { my(f=factor(n)); for (i=1, #f~, if(f[i, 2] < 2, f[i, 1] = 0)); vecsum(vector(#f~,i,f[i,1]^f[i,2])); }; \\ Antti Karttunen, Oct 07 2017
  • Python
    from sympy import primefactors, isprime, gcd, divisors
    def a(n): return sum(d for d in divisors(n) if gcd(d, n//d)==1 and len(primefactors(d))==1 and not isprime(d))
    print([a(n) for n in range(1, 109)]) # Indranil Ghosh, Aug 02 2017
    

Formula

a(n) = Sum_{d|n, d = p^k, p prime, k >= 2, gcd(d, n/d) = 1} d.
a(A246547(k)) = A246547(k).
a(A005117(k)) = 0.
Additive with a(p^e) = p^e if e >= 2, and 0 otherwise. - Amiram Eldar, Jul 24 2024

A322177 If n = Product (p_j^k_j) then a(n) = Sum (prime(p_j)^prime(k_j)).

Original entry on oeis.org

0, 9, 25, 27, 121, 34, 289, 243, 125, 130, 961, 52, 1681, 298, 146, 2187, 3481, 134, 4489, 148, 314, 970, 6889, 268, 1331, 1690, 3125, 316, 11881, 155, 16129, 177147, 986, 3490, 410, 152, 24649, 4498, 1706, 364, 32041, 323, 36481, 988, 246, 6898, 44521, 2212, 4913, 1340
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 30 2018

Keywords

Examples

			a(12) = a(2^2 * 3^1) = prime(2)^prime(2) + prime(3)^prime(1) = 3^3 + 5^2 = 52.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ (Prime[#[[1]]]^Prime[#[[2]]] & /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 50}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = prime(f[k,1])^prime(f[k,2]);); vecsum(f[,1]); \\ Michel Marcus, Nov 30 2018
Showing 1-6 of 6 results.