cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A182122 Expansion of exp( arcsinh( 2*x ) ).

Original entry on oeis.org

1, 2, 2, 0, -2, 0, 4, 0, -10, 0, 28, 0, -84, 0, 264, 0, -858, 0, 2860, 0, -9724, 0, 33592, 0, -117572, 0, 416024, 0, -1485800, 0, 5348880, 0, -19389690, 0, 70715340, 0, -259289580, 0, 955277400, 0, -3534526380, 0, 13128240840, 0, -48932534040, 0, 182965127280
Offset: 0

Views

Author

Michael Somos, Apr 13 2012

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^2 - 2*x^4 + 4*x^6 - 10*x^8 + 28*x^10 - 84*x^12 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Exp(Argsinh(2*x)))); // G. C. Greubel, Aug 12 2018
  • Maple
    s := proc(n) option remember; `if`(n<2, n+1, -4*(n-2)*s(n-2)/(n+1)) end: A127846 := n -> `if`(n<2,n+1,s(n-1)); seq(A127846(n), n=0..47); # Peter Luschny, Sep 23 2014
  • Mathematica
    CoefficientList[Series[Exp[ArcSinh[2x]],{x,0,50}],x] (* Harvey P. Dale, Aug 18 2012 *)
    Table[2 HypergeometricPFQ[{-n+1,2-n},{2},-1],{n,0,46}] (* Peter Luschny, Sep 23 2014 *)
  • PARI
    {a(n) = if( n<2, (n>=0) + (n>0), n = n-2; if( n%2, 0, (-1)^(n/2) * 4 * binomial( n, n/2) / (n + 2)))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sqrt( 1 + 4*x^2 + x*O(x^n) ) + 2*x, n ) )};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = sqrt( 1 + 4*x * A)); polcoeff( A, n))};
    
  • Sage
    def A182122(n):
        if n < 2: return n+1
        if n % 2 == 1: return 0
        return (-1)^(n/2-1)*binomial(n,n/2)/(n-1)
    [A182122(n) for n in range(47)] # Peter Luschny, Sep 23 2014
    

Formula

G.f.: 2*x + sqrt( 1 + 4*x^2 ) = 1 / (1 - 2*x / (1 + x / (1 - x / (1 + x / ... )))).
The g.f. A(x) satisfies: A(x) = sqrt(1 + 4*x * A(x)).
a(n) = (-1)^n * A104624(n). Convolution inverse of A104624.
Conjecture : n*(n+1)*a(n) + (n+2)*(n-1)*a(n-1) +4*(n+1)*(n-3)*a(n-2) +4*(n+2)*(n-4)*a(n-3) = 0.- R. J. Mathar, Jul 24 2012
a(n) = 2*hypergeom([-n+1,2-n],[2],-1). - Peter Luschny, Sep 23 2014
0 = a(n)*(+16*a(n+2) + 10*a(n+4)) + a(n+2)*(-2*a(n+2) + a(n+4)) if n>=0. - Michael Somos, Jan 10 2017
a(n+4) = 2 * a(n+2) * (a(n+2) - 8*a(n)) / (a(n+2) + 10*a(n)) if n>=0 is even. - Michael Somos, Jan 10 2017
G.f. A(x) satisfies A(x) = 1/A(-x). - Seiichi Manyama, Jun 20 2025

A085614 Number of elementary arches of size n.

Original entry on oeis.org

1, 3, 16, 105, 768, 6006, 49152, 415701, 3604480, 31870410, 286261248, 2604681690, 23957864448, 222399744300, 2080911654912, 19604537460045, 185813170126848, 1770558814528770, 16951376923852800, 162984598242674670
Offset: 1

Views

Author

N. J. A. Sloane, Jul 10 2003

Keywords

Crossrefs

Programs

  • Maple
    with(combstruct); ar := {EA = Union(Sequence(EA, card >= 2), Prod(Z, Sequence(EA), Sequence(EA))), C=Union(Z, Prod(Z,Z,Sequence(EA), Sequence(EA), Sequence(Union(Sequence(EA,card>=1), Prod(Z,Sequence(EA),Sequence(EA))))))}; seq(count([EA,ar], size=i),i=1..20);
  • Mathematica
    Rest[CoefficientList[Series[1/6*Sqrt[3]*Sin[1/3*ArcSin[6*Sqrt[3]*x]] - 1/2*Cos[1/3*ArcSin[6*Sqrt[3]*x]],{x,0,20}],x]] (* Vaclav Kotesovec, Oct 21 2012 *)
    Rest[CoefficientList[InverseSeries[Series[x - 3*x^2 + 2*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
    (* From Dixon J. Jones, Apr 15 2021: (Start) *)
    Table[4^n Gamma[(3n + 2)/2]/(Gamma[(n + 2)/2](n + 1)!), {n, 0, 20}]
    Table[4^n Pochhammer[(n + 2)/2, n]/(n + 1)!, {n, 0, 20}] (* End *)
  • PARI
    a(n)=if(n<1,0,polcoeff(serreverse(x-3*x^2+2*x^3+x*O(x^n)),n))

Formula

G.f. is the series reversion of x-3*x^2+2*x^3.
a(n) = 2^n*(3*n)!!/((n+1)!*n!!). - Maxim Krikun (krikun(AT)iecn.u-nancy.fr), May 25 2007
G.f.: 1/6*sqrt(3)*sin(1/3*arcsin(6*sqrt(3)*x))-1/2*cos(1/3*arcsin(6*sqrt(3)*x)). - Vaclav Kotesovec, Oct 21 2012
Conjecture: n*(n-1)*a(n) +(n-1)*(n-2)*a(n-1) -12*(3*n-5)*(3*n-7)*a(n-2) -12*(3*n-8)*(3*n-10)*a(n-3) = 0. - R. J. Mathar, Oct 18 2013
a(n) ~ 2^(n - 3/2) * 3^(3*n/2 - 1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2017
From Dixon J. Jones, Apr 15 2021: (Start)
a(n) = A206300(n)/2 = abs(A224884(n))/2 for n>=1.
a(n) = 4^n Gamma((3*n + 2)/2)/(Gamma((n + 2)/2)*(n + 1)!).
a(n) = (4^n*((n + 2)/2)_n)/(n + 1)!, where (x)_k is the Pochhammer symbol. (End)

A247029 G.f. A(x) satisfies A(x) = A(x)^4 - 9*x.

Original entry on oeis.org

1, 3, -18, 180, -2187, 29484, -424116, 6377292, -99034650, 1576075644, -25569752274, 421325812440, -7031733125508, 118620405322020, -2019349799669160, 34647126360607440, -598525520999144643, 10401492640172342940, -181721630178565389900, 3189811189331825319492
Offset: 0

Views

Author

Paul D. Hanna, Sep 09 2014

Keywords

Examples

			G.f.: A(x) = 1 + 3*x - 18*x^2 + 180*x^3 - 2187*x^4 + 29484*x^5 - 424116*x^6 +...
where
A(x)^4 = 1 + 12*x - 18*x^2 + 180*x^3 - 2187*x^4 + 29484*x^5 - 424116*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    FullSimplify[Table[-(-1)^n * 3^(2*n-1) * 4^(n-1) * Gamma[n/3 + 1/6] * Gamma[2*n/3 - 1/6] / (Pi * Gamma[n + 1]), {n, 0, 20}]] (* Vaclav Kotesovec, Nov 18 2017 *)
  • PARI
    {a(n)=polcoeff(x/serreverse(x*(1+9*x +x^2*O(x^n))^(1/3)), n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f.: x / Series_Reversion( x*(1 + 9*x)^(1/3) ).
Recurrence: (n-2)*(n-1)*n*a(n) = -216*(2*n - 5)*(4*n - 13)*(4*n - 7)*a(n-3). - Vaclav Kotesovec, Nov 18 2017
a(n) ~ -(-1)^n * 2^(8*n/3 - 13/6) * 3^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Nov 18 2017
G.f. A(x) satisfies A(x) = 1/A(-x/A(x)^5). - Seiichi Manyama, Jun 20 2025

A206300 Expand the real root of y^3 - y + x in powers of x, then multiply coefficient of x^n by -4^n to get integers.

Original entry on oeis.org

-1, 2, 6, 32, 210, 1536, 12012, 98304, 831402, 7208960, 63740820, 572522496, 5209363380, 47915728896, 444799488600, 4161823309824, 39209074920090, 371626340253696, 3541117629057540
Offset: 0

Views

Author

Roger L. Bagula, Feb 05 2012

Keywords

Comments

Also coefficients of the series S(u) for which (-sqrt(3u))*S converges to the larger of the two real roots of x^3 - 3ux + 4u for u >= 4. Specifically, S(u)=Sum_{n>=0} a(n)/(27*u)^(n/2). - Dixon J. Jones, Jun 24 2021

References

  • George E. Andrews, Number Theory, 1971, Dover Publications, New York, pp. 41-43.

Crossrefs

Cf. A000108, A048990, A224884 (signed version).
Cf. A085614.

Programs

  • Mathematica
    p[x_] = y /. Solve[y^3 - y + x == 0, y][[1]]
    b = Table[-4^n*FullSimplify[ExpandAll[SeriesCoefficient[ Series[p[x], {x, 0, 30}], n]]], {n, 0, 30}]
    Table[2^(2n - 1) Gamma[(3n - 1)/2]/(Gamma[(n + 1)/2]n!), {n, 0, 20}] (* Dixon J. Jones, Jun 24 2021 *)
    Table[2^(2n - 1) Pochhammer[(n + 1)/2, (n-1)]/n!, {n, 0, 20}] (* Dixon J. Jones, Jun 24 2021 *)
  • PARI
    -x/serreverse((x*sqrt(1-4*x))) \\ Thomas Baruchel, Jul 02 2018

Formula

G.f.: -(12*x)/(2*sin(arcsin(216*x^2-1)/3)+1). - Vladimir Kruchinin, Oct 30 2014
G.f.: -x/Revert((x*sqrt(1-4*x))). - Thomas Baruchel, Jul 02 2018
G.f.: - (1/x) * Revert( x*sqrt(c(4*x)) ), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108 and sqrt(c(4*x)) is the g.f. of A048990. - Peter Bala, Mar 05 2020
From Dixon J. Jones, Jun 24 2021: (Start)
a(n) = 2*A085614(n) for n>=1.
a(n) = 2^(2*n - 1) Gamma((3*n - 1)/2)/(Gamma((n + 1)/2)*n!).
a(n) = (2^(2*n - 1)*((n + 1)/2)_(n-1))/n!, where (x)_k is the Pochhammer symbol. (End)
a(n) ~ 2^(n-1/2) * 3^(3*n/2-1) / (sqrt(Pi) * n^(3/2)). - Amiram Eldar, Sep 01 2025

Extensions

Edited by N. J. A. Sloane, Feb 09 2012
Showing 1-4 of 4 results.