cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A089072 Triangle read by rows: T(n,k) = k^n, n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 1, 4, 1, 8, 27, 1, 16, 81, 256, 1, 32, 243, 1024, 3125, 1, 64, 729, 4096, 15625, 46656, 1, 128, 2187, 16384, 78125, 279936, 823543, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489
Offset: 1

Views

Author

Alford Arnold, Dec 04 2003

Keywords

Comments

T(n, k) = number of mappings from an n-element set into a k-element set. - Clark Kimberling, Nov 26 2004
Let S be the semigroup of (full) transformations on [n]. Let a be in S with rank(a) = k. Then T(n,k) = |a S|, the number of elements in the right principal ideal generated by a. - Geoffrey Critzer, Dec 30 2021
From Manfred Boergens, Jun 23 2024: (Start)
In the following two comments the restriction k<=n can be lifted, allowing all k>=1.
T(n,k) is the number of n X k binary matrices with row sums = 1.
T(n,k) is the number of coverings of [n] by tuples (A_1,...,A_k) in P([n])^k with disjoint A_j, with P(.) denoting the power set.
For nonempty A_j see A019538.
For tuples with "disjoint" dropped see A092477.
For tuples with nonempty A_j and with "disjoint" dropped see A218695. (End)

Examples

			Triangle begins:
  1;
  1,  4;
  1,  8,  27;
  1, 16,  81,  256;
  1, 32, 243, 1024,  3125;
  1, 64, 729, 4096, 15625, 46656;
  ...
		

Crossrefs

Related to triangle of Eulerian numbers A008292.

Programs

  • Haskell
    a089072 = flip (^)
    a089072_row n = map (a089072 n) [1..n]
    a089072_tabl = map a089072_row [1..]  -- Reinhard Zumkeller, Mar 18 2013
    
  • Magma
    [k^n: k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 01 2022
    
  • Mathematica
    Column[Table[k^n, {n, 8}, {k, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
  • SageMath
    flatten([[k^n for k in range(1,n+1)] for n in range(1,12)]) # G. C. Greubel, Nov 01 2022

Formula

Sum_{k=1..n} T(n, k) = A031971(n).
T(n, n) = A000312(n).
T(2*n, n) = A062206(n).
a(n) = (n + T*(1-T)/2)^T, where T = round(sqrt(2*n),0). - Gerald Hillier, Apr 12 2015
T(n,k) = A051129(n,k). - R. J. Mathar, Dec 10 2015
T(n,k) = Sum_{i=0..k} Stirling2(n,i)*binomial(k,i)*i!. - Geoffrey Critzer, Dec 30 2021
From G. C. Greubel, Nov 01 2022: (Start)
T(n, n-1) = A007778(n-1), n >= 2.
T(n, n-2) = A008788(n-2), n >= 3.
T(2*n+1, n) = A085526(n).
T(2*n-1, n) = A085524(n).
T(2*n-1, n-1) = A085526(n-1), n >= 2.
T(3*n, n) = A083282(n).
Sum_{k=1..n} (-1)^k * T(n, k) = (-1)^n * A120485(n).
Sum_{k=1..floor(n/2)} T(n-k, k) = A226065(n).
Sum_{k=1..floor(n/2)} T(n, k) = A352981(n).
Sum_{k=1..floor(n/3)} T(n, k) = A352982(n). (End)

Extensions

More terms and better definition from Herman Jamke (hermanjamke(AT)fastmail.fm), Jul 10 2004
Offset corrected by Reinhard Zumkeller, Mar 18 2013

A062815 a(n) = Sum_{i=1..n} i^(i+1).

Original entry on oeis.org

1, 9, 90, 1114, 16739, 296675, 6061476, 140279204, 3627063605, 103627063605, 3242055440326, 110235260819398, 4047611646518687, 159615707204330911, 6728024062917221536, 301875929242270047392, 14364960381309995038401
Offset: 1

Views

Author

Olivier Gérard, Jun 23 2001

Keywords

Crossrefs

Partial sums of A007778. - Michel Marcus, Mar 26 2019

Programs

  • Mathematica
    Accumulate[#^(#+1)&/@Range[17]]  (* Harvey P. Dale, Mar 18 2011 *)
  • PARI
    a(n) = sum(i=1, n, i^(i+1)); \\ Michel Marcus, Mar 26 2019

Extensions

Definition simplified by Jon E. Schoenfield, Nov 29 2008

A226140 a(n) = Sum_{i=1..floor(n/2)} (n-i)^i.

Original entry on oeis.org

0, 1, 2, 7, 13, 48, 95, 424, 898, 4837, 10780, 68399, 158111, 1156224, 2745145, 22744380, 55098660, 510307001, 1255610350, 12859037607, 32030878113, 359498491968, 904385401323, 11040700820704, 28000658588542
Offset: 1

Views

Author

Wesley Ivan Hurt, May 27 2013

Keywords

Comments

a(n) is the sum of the larger parts raised to the corresponding smaller parts of the partitions of n into exactly two parts.

Examples

			a(6) = 48; 6 has exactly 3 partitions into two parts: (5,1),(4,2),(3,3). Raising the larger parts to their corresponding smaller parts and adding the results, we get: 5^1 + 4^2 + 3^3 = 5 + 16 + 27 = 48.
		

Crossrefs

Cf. A226065.

Programs

  • Maple
    A226140:=n->sum((n-i)^i, i=1..n/2): seq(A226140(n), n=1..40);
  • Mathematica
    Array[Sum[(# - i)^i, {i, Floor[#/2]}] &, 25] (* Michael De Vlieger, Jan 23 2018 *)
    Table[Total[#[[1]]^#[[2]]&/@IntegerPartitions[n,{2}]],{n,30}] (* Harvey P. Dale, Mar 25 2025 *)
  • PARI
    a(n) = sum(k=1, n\2, (n-k)^k); \\ Michel Marcus, Dec 13 2015

Formula

a(n) = Sum_{i=1..floor(n/2)} (n-i)^i.
Showing 1-3 of 3 results.