cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A152147 Irregular triangle in which row n lists k > 0 such that the sum of digits of k^n equals k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 9, 1, 8, 17, 18, 26, 27, 1, 7, 22, 25, 28, 36, 1, 28, 35, 36, 46, 1, 18, 45, 54, 64, 1, 18, 27, 31, 34, 43, 53, 58, 68, 1, 46, 54, 63, 1, 54, 71, 81, 1, 82, 85, 94, 97, 106, 117, 1, 98, 107, 108, 1, 108, 1, 20, 40, 86, 103, 104, 106, 107, 126, 134, 135
Offset: 1

Views

Author

T. D. Noe, Nov 26 2008

Keywords

Comments

Each row begins with 1 and has length A046019(n).

Examples

			1, 2, 3, 4, 5, 6, 7, 8, 9;
1, 9;
1, 8, 17, 18, 26, 27;              (A046459, with 0)
1, 7, 22, 25, 28, 36;              (A055575    "   )
1, 28, 35, 36, 46;                 (A055576    "   )
1, 18, 45, 54, 64;                 (A055577    "   )
1, 18, 27, 31, 34, 43, 53, 58, 68; (A226971    "   )
1, 46, 54, 63;
1, 54, 71, 81,
1, 82, 85, 94, 97, 106, 117,
1, 98, 107, 108, etc.
		

Crossrefs

Programs

  • Python
    def ok(k, r): return sum(map(int, str(k**r))) == k
    def agen(rows, startrow=1, withzero=0):
      for r in range(startrow, rows + startrow):
        d, lim = 1, 1
        while lim < r*9*d: d, lim = d+1, lim*10
        yield from [k for k in range(1-withzero, lim+1) if ok(k, r)]
    print([an for an in agen(13)]) # Michael S. Branicky, May 23 2021

A055577 Numbers k such that the sum of digits of k^6 is equal to k.

Original entry on oeis.org

0, 1, 18, 45, 54, 64
Offset: 1

Views

Author

Henry Bottomley, May 26 2000

Keywords

Examples

			a(2) = 18 because 18^6 = 34012224 and 3+4+0+1+2+2+2+4 = 18
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100] | &+Intseq(n^6) eq n ]; // Vincenzo Librandi, Feb 23 2015
    
  • Mathematica
    Select[Range[0,100],#==Total[IntegerDigits[#^6]]&] (* Harvey P. Dale, Oct 26 2011 *)
  • PARI
    isok(k)=sumdigits(k^6)==k \\ Patrick De Geest, Dec 13 2024
  • Sage
    [n for n in (0..70) if sum((n^6).digits()) == n] # Bruno Berselli, Feb 23 2015
    

A281918 7th power analog of Keith numbers.

Original entry on oeis.org

1, 18, 27, 31, 34, 43, 53, 58, 68, 145, 187, 314, 826, 2975, 37164, 40853, 58530, 72795, 77058, 160703, 187617, 1926759, 6291322, 6628695, 25285305, 31292514, 33968486, 54954185, 71593237, 125921697, 555963577, 575307142, 2393596216, 2444508547, 42544333760, 97812197525
Offset: 1

Views

Author

Paolo P. Lava, Feb 02 2017

Keywords

Comments

Like Keith numbers but starting from n^7 digits to reach n.
Consider the digits of n^7. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some number of iterations reach a sum equal to n.
a(30) > 10^8. - Jinyuan Wang, Jan 30 2020

Examples

			145^7 = 1347646586640625:
1 + 3 + 4 + 7 + 6 + 4 + 6 + 5 + 8 + 6 + 6 + 4 + 0 + 6 + 2 + 5 = 73;
3 + 4 + 7 + 6 + 4 + 6 + 5 + 8 + 6 + 6 + 4 + 0 + 6 + 2 + 5 + 73 = 145.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
    for n from 1 to q do b:=n^w; a:=[];
    for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
    for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
    t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    (* function keithQ[ ] is defined in A007629 *)
    a281918[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 7]&]]
    a281918[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)

Extensions

a(28)-a(29) from Jinyuan Wang, Jan 30 2020
a(30)-a(36) from Giovanni Resta, Feb 03 2020
Showing 1-3 of 3 results.