cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000515 a(n) = (2n)!(2n+1)!/n!^4, or equally (2n+1)*binomial(2n,n)^2.

Original entry on oeis.org

1, 12, 180, 2800, 44100, 698544, 11099088, 176679360, 2815827300, 44914183600, 716830370256, 11445589052352, 182811491808400, 2920656969720000, 46670906271240000, 745904795339462400, 11922821963004219300, 190600129650794094000, 3047248986392325330000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the (n,n)-th entry in the inverse of the n-th Hilbert matrix. - Asher Auel, May 20 2001
a(n) is also the ratio of the determinants of the n-th Hilbert matrix to the (n+1)-th Hilbert matrix (see A005249), for n>0. Thus the determinant of the inverse of the n-th Hilbert matrix is the product of a(i) for i from 1 to n. (Claimed by Jud McCranie without proof, Jul 17 2000)
a(n) is the right side of the binomial sum: 2^(4*n) * Sum_{i=0..n} binomial(-1/2, i)*binomial(1/2, i). - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
Right-hand side of Sum_{i=0..n} Sum_{j=0..n} binomial(i+j,j)^2 * binomial(4n-2i-2j,2n-2j).

References

  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.
  • A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(2*n+1)*Binomial(2*n,n)^2: n in [0..25]]; // Vincenzo Librandi, Oct 08 2015
    
  • Maple
    with(linalg): for n from 1 to 24 do print(det(hilbert(n))/det(hilbert(n+1))): od;
  • Mathematica
    A000515[n_] := (2*n + 1)*Binomial[2 n, n]^2 (* Enrique Pérez Herrero, Mar 31 2010 *)
    Table[(2 n + 1) (n + 1)^2 CatalanNumber[n]^2, {n, 0, 18}] (* Jan Mangaldan, Sep 23 2021 *)
  • PARI
    vector(100, n, n--; (2*n+1)*binomial(2*n,n)^2) \\ Altug Alkan, Oct 08 2015

Formula

a(n) ~ 2*Pi^-1*2^(4*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
O.g.f.: (2/Pi)*EllipticE(4*sqrt(x))/(1-16*x). - Vladeta Jovovic, Jun 15 2005
E.g.f.: Sum_{n>=0} a(n)*x^(2n)/(2n)! = BesselI(0, 2*x)*(BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). - Vladeta Jovovic, Jun 15 2005
E.g.f.: Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)! = BesselI(0, 2x)^2*x. - Michael Somos, Jun 22 2005
E.g.f.: x*(BesselI(0, 2*x))^2 = x+(2*x^3)/(U(0)-2*x^2); U(k) = (2*x^2)*(2*k+1) + (k+1)^3 - (2*x^2)*(2*k+3)*((k+1)^3)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2011
n^2*a(n) - 4*(2*n-1)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Sep 08 2013
O.g.f.: hypergeom([1/2, 3/2], [1], 16*x). - Peter Luschny, Oct 08 2015

A228329 a(n) = Sum_{k=0..n} (k+1)^2*T(n,k)^2 where T(n,k) is the Catalan triangle A039598.

Original entry on oeis.org

1, 8, 98, 1320, 18590, 268736, 3952228, 58837680, 883941750, 13373883600, 203487733020, 3110407163760, 47726453450988, 734694122886080, 11341161925265480, 175489379096245984, 2721169178975361702, 42273090191785999728, 657788911222324942060, 10250564041646388681200
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2013

Keywords

Comments

Let h(m) denote the sequence whose n-th term is Sum_{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(2).

Crossrefs

Cf. A039598, A000108, A024492 (h(0)), A000894 (h(1)), A000515 (h(3)), A228330 (h(4)), A228331 (h(5)), A228332 (h(6)), A228333 (h(7)).

Programs

  • Maple
    B:=(n,k)->binomial(2*n, n-k) - binomial(2*n, n-k-2); #A039598
    Omega:=(m,n)->add((k+1)^m*B(n,k)^2,k=0..n);
    h:=m->[seq(Omega(m,n),n=0..20)];
    h(2);
    # Second solution:
    h := n -> I*HeunG(8/5,0,-1/4,1/4,3/2,1/2,16*x)/sqrt(16*x-1);
    seq(coeff(series(h(x),x,n+2),x,n),n=0..19); # Peter Luschny, Nov 26 2013
  • Mathematica
    a[n_] := Binomial[4n, 2n] (3n+1)/(2n+1);
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 30 2018, after Philippe Deléham *)
  • Sage
    @CachedFunction
    def A228329(n):
        return A228329(n-1)*(6*n+2)*(4*n-3)*(4*n-1)/(n*(2*n+1)*(3*n-2)) if n>0 else 1
    [A228329(n) for n in (0..19)]  # Peter Luschny, Nov 26 2013

Formula

Conjecture: n*(2*n+1)*a(n) + 2*(-26*n^2+25*n-11)*a(n-1) + 20*(4*n-5)*(4*n-7)*a(n-2) = 0. - R. J. Mathar, Sep 08 2013
a(n) = ((4n)!*(3n+1))/((2n)!^2*(2n+1)) = binomial(4n,2n)*(3n+1)/(2n+1). - Philippe Deléham, Nov 25 2013
Therefore a(n) = A051960(2*n) / 2. - F. Chapoton, Jun 14 2024
From Peter Luschny, Nov 26 2013: (Start)
a(n) = 16^n*(3*n+1)*gamma(2*n+1/2)/(sqrt(Pi)*gamma(2*n+2)).
a(n) = a(n-1)*(6*n+2)*(4*n-3)*(4*n-1)/(n*(2*n+1)*(3*n-2)) if n > 0 else 1.
a(n) = [x^n] I*HeunG(8/5,0,-1/4,1/4,3/2,1/2,16*x)/sqrt(16*x-1) where [x^n] f(x) is the coefficient of x^n in f(x) and HeunG is the Heun general function. (End)

A228331 Let h(m) denote the sequence whose n-th term is Sum__{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(5).

Original entry on oeis.org

1, 36, 780, 16240, 321300, 6131664, 114017904, 2079380160, 37356642180, 663144710800, 11657925495216, 203295462691776, 3521108298744400, 60632838691387200, 1038859802556120000, 17721669103065158400, 301147406355880764900, 5099997408534884394000, 86106549929771707182000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k+1)^5*(Binomial[2n+1, n-k]*2*(k+1)/(n+k+2))^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 08 2013 *)

Formula

Conjecture: n^2*a(n) +4*(2*n^2-22*n+11)*a(n-1) +16*(-7*n^2-54*n+166)*a(n-2) -1088*(2*n-3)*(2*n-7)*a(n-3)=0. - R. J. Mathar, Sep 08 2013
Recurrence: n^2*(3*n^2 - 5*n + 1)*a(n) = 4*(2*n-3)*(2*n+1)*(3*n^2 + n - 1)*a(n-1). - Vaclav Kotesovec, Dec 08 2013
a(n) = binomial(2*n,n)^2 * (2*n+1)*(3*n^2+n-1)/(2*n-1). - Vaclav Kotesovec, Dec 08 2013
G.f.: ((28*x+3)*hypergeom([1/2, 5/2],[1],16*x)+20*x*(1-16*x)*hypergeom([3/2, 7/2],[2],16*x))/3. - Mark van Hoeij, Apr 12 2014

A228333 Let h(m) denote the sequence whose n-th term is Sum__{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(7).

Original entry on oeis.org

1, 132, 4260, 120400, 3017700, 69776784, 1524611088, 31951782720, 648578888100, 12837530477200, 248966505964176, 4747739344525632, 89267646282614800, 1658349027407016000, 30489930211792680000, 555544747397829254400, 10042477557290424843300, 180267292319119226298000, 3215718323211443887530000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k+1)^7*(Binomial[2n+1, n-k]*2*(k+1)/(n+k+2))^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 08 2013 *)

Formula

Conjecture: n^2*(304*n-411)*a(n) + 4*(-1814*n^3+2554*n^2-4776*n+7567)*a(n-1) + 32*(2*n-5)*(2*n-1)*(299*n-176)*a(n-2) = 0. - R. J. Mathar, Dec 04 2013
Recurrence: n^2*(6*n^3 - 12*n^2 + 6*n - 1)*a(n) = 4*(2*n-3)*(2*n+1)*(6*n^3 + 6*n^2 - 1)*a(n-1). - Vaclav Kotesovec, Dec 08 2013
a(n) = binomial(2*n,n)^2 * (2*n+1)*(6*n^3+6*n^2-1)/(2*n-1). - Vaclav Kotesovec, Dec 08 2013
G.f.: ((256*x+3)*hypergeom([1/2, 5/2],[1],16*x)+80*(38*x+1)*x*hypergeom([3/2, 7/2],[2],16*x))/3. - Mark van Hoeij, Apr 12 2014

A228332 Let h(m) denote the sequence whose n-th term is Sum_{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(6).

Original entry on oeis.org

1, 68, 1778, 43080, 958430, 20119736, 405350788, 7921691280, 151231519350, 2834134359000, 52320693313020, 953960351550960, 17212782834351468, 307826474156801840, 5462948893700675720, 96303960593503261984, 1687752152779483045542, 29424712141610821296408, 510621541414656188646220
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k+1)^6*(Binomial[2n+1, n-k]*2*(k+1)/(n+k+2))^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 08 2013 *)

Formula

Recurrence: n*(2*n+1)*(105*n^5 - 420*n^4 + 588*n^3 - 356*n^2 + 96*n - 10)*a(n) = 2*(4*n-7)*(4*n-5)*(105*n^5 + 105*n^4 - 42*n^3 - 62*n^2 - 7*n + 3)*a(n-1). - Vaclav Kotesovec, Dec 08 2013
a(n) = binomial(4*n,2*n) * (105*n^5 + 105*n^4 - 42*n^3 - 62*n^2 - 7*n + 3) / ((2*n+1)*(4*n-3)*(4*n-1)). - Vaclav Kotesovec, Dec 08 2013
Showing 1-5 of 5 results.