A000515
a(n) = (2n)!(2n+1)!/n!^4, or equally (2n+1)*binomial(2n,n)^2.
Original entry on oeis.org
1, 12, 180, 2800, 44100, 698544, 11099088, 176679360, 2815827300, 44914183600, 716830370256, 11445589052352, 182811491808400, 2920656969720000, 46670906271240000, 745904795339462400, 11922821963004219300, 190600129650794094000, 3047248986392325330000
Offset: 0
- E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.
- A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- G. E. Andrews and P. Paule, Some questions concerning computer-generated proofs of a binomial double-sum identity, J. Symbolic Computation 11(1994), 1-7.
- D. Galakhov, A. Mironov and A. Morozov, Wall Crossing Invariants: from quantum mechanics to knots, arXiv preprint arXiv:1410.8482 [hep-th], 2014. See Eq. (A.15).
- R. K. Guy, Letter to N. J. A. Sloane, Sep 1986
- J. E. Lauer, Letter to N. J. A. Sloane, Dec 1980
- D. H. Lehmer, Review of A. N. Lowan et al., "Table of the zeros of the Legendre polynomials of order 1-16...", in Math. Tables Aids Computation (MTAC), 1 (1943-1945), 52-53.
- Pedro J. Miana and Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Omega3. Remark 3 p. 1882.
- I. Nemes et al., How to do Monthly problems with your computer, Amer. Math. Monthly, 104 (1997), 505-519.
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013 (see Omega_3).
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
Cf.
A002894,
A005249,
A002457,
A000108,
A039598,
A024492,
A000894,
A228329,
A000515,
A228330,
A228331,
A228332,
A228333.
-
[(2*n+1)*Binomial(2*n,n)^2: n in [0..25]]; // Vincenzo Librandi, Oct 08 2015
-
with(linalg): for n from 1 to 24 do print(det(hilbert(n))/det(hilbert(n+1))): od;
-
A000515[n_] := (2*n + 1)*Binomial[2 n, n]^2 (* Enrique Pérez Herrero, Mar 31 2010 *)
Table[(2 n + 1) (n + 1)^2 CatalanNumber[n]^2, {n, 0, 18}] (* Jan Mangaldan, Sep 23 2021 *)
-
vector(100, n, n--; (2*n+1)*binomial(2*n,n)^2) \\ Altug Alkan, Oct 08 2015
A228329
a(n) = Sum_{k=0..n} (k+1)^2*T(n,k)^2 where T(n,k) is the Catalan triangle A039598.
Original entry on oeis.org
1, 8, 98, 1320, 18590, 268736, 3952228, 58837680, 883941750, 13373883600, 203487733020, 3110407163760, 47726453450988, 734694122886080, 11341161925265480, 175489379096245984, 2721169178975361702, 42273090191785999728, 657788911222324942060, 10250564041646388681200
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..825
- Pedro J. Miana and Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Remark 3 p. 1882. Omega2(n) = a(n-1).
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv:1305.2017 [math.CO], 2013.
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33.
-
B:=(n,k)->binomial(2*n, n-k) - binomial(2*n, n-k-2); #A039598
Omega:=(m,n)->add((k+1)^m*B(n,k)^2,k=0..n);
h:=m->[seq(Omega(m,n),n=0..20)];
h(2);
# Second solution:
h := n -> I*HeunG(8/5,0,-1/4,1/4,3/2,1/2,16*x)/sqrt(16*x-1);
seq(coeff(series(h(x),x,n+2),x,n),n=0..19); # Peter Luschny, Nov 26 2013
-
a[n_] := Binomial[4n, 2n] (3n+1)/(2n+1);
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 30 2018, after Philippe Deléham *)
-
@CachedFunction
def A228329(n):
return A228329(n-1)*(6*n+2)*(4*n-3)*(4*n-1)/(n*(2*n+1)*(3*n-2)) if n>0 else 1
[A228329(n) for n in (0..19)] # Peter Luschny, Nov 26 2013
A228330
Let h(m) denote the sequence whose n-th term is Sum_{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(4).
Original entry on oeis.org
1, 20, 362, 6504, 114686, 1992536, 34231540, 583027920, 9862508790, 165918037560, 2778642667020, 46358257249200, 770951008563372, 12785838603285104, 211540243555702376, 3492587812271418784, 57557091526140668070, 946970607665938615032, 15557339429900195819164, 255246113991506558429936
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..825
- Pedro J. Miana and Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Remark 3 p. 1882. Omega4(n) = a(n-1).
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv:1305.2017 [math.CO], 2013.
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33.
-
List([0..20], n-> Binomial(4*n,2*n)*(15*n^3+15*n^2+n-1)/((2*n+1)*(4*n-1))); # G. C. Greubel, Mar 02 2019
-
[Binomial(4*n,2*n)*(15*n^3+15*n^2+n-1)/((2*n+1)*(4*n-1)): n in [0..20]]; // G. C. Greubel, Mar 02 2019
-
Table[4*Sum[(k+1)^6*(Binomial[2n+1, n-k]/(n+k+2))^2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Dec 08 2013 *)
-
vector(20, n, n--; binomial(4*n,2*n)*(15*n^3+15*n^2+n-1)/((2*n+1)*(4*n-1))) \\ G. C. Greubel, Mar 02 2019
-
[binomial(4*n,2*n)*(15*n^3+15*n^2+n-1)/((2*n+1)*(4*n-1)) for n in (0..20)] # G. C. Greubel, Mar 02 2019
A228331
Let h(m) denote the sequence whose n-th term is Sum__{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(5).
Original entry on oeis.org
1, 36, 780, 16240, 321300, 6131664, 114017904, 2079380160, 37356642180, 663144710800, 11657925495216, 203295462691776, 3521108298744400, 60632838691387200, 1038859802556120000, 17721669103065158400, 301147406355880764900, 5099997408534884394000, 86106549929771707182000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Pedro J. Miana and Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Omega5. Remark 3 p. 1882.
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017, 2013
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
-
Table[Sum[(k+1)^5*(Binomial[2n+1, n-k]*2*(k+1)/(n+k+2))^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 08 2013 *)
A228332
Let h(m) denote the sequence whose n-th term is Sum_{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(6).
Original entry on oeis.org
1, 68, 1778, 43080, 958430, 20119736, 405350788, 7921691280, 151231519350, 2834134359000, 52320693313020, 953960351550960, 17212782834351468, 307826474156801840, 5462948893700675720, 96303960593503261984, 1687752152779483045542, 29424712141610821296408, 510621541414656188646220
Offset: 0
- Pedro J. Miana and Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Remark 3 p. 1882. Omega6(n) = a(n-1).
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013.
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33.
-
Table[Sum[(k+1)^6*(Binomial[2n+1, n-k]*2*(k+1)/(n+k+2))^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 08 2013 *)
Showing 1-5 of 5 results.
Comments