cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A086106 Decimal expansion of positive root of x^4 - x^3 - 1 = 0.

Original entry on oeis.org

1, 3, 8, 0, 2, 7, 7, 5, 6, 9, 0, 9, 7, 6, 1, 4, 1, 1, 5, 6, 7, 3, 3, 0, 1, 6, 9, 1, 8, 2, 2, 7, 3, 1, 8, 7, 7, 8, 1, 6, 6, 2, 6, 7, 0, 1, 5, 5, 8, 7, 6, 3, 0, 2, 5, 4, 1, 1, 7, 7, 1, 3, 3, 1, 2, 1, 1, 2, 4, 9, 5, 7, 4, 1, 1, 8, 6, 4, 1, 5, 2, 6, 1, 8, 7, 8, 6, 4, 5, 6, 8, 2, 4, 9, 0, 3, 5, 5, 0, 9, 3, 7
Offset: 1

Views

Author

Eric W. Weisstein, Jul 09 2003

Keywords

Comments

Also the growth constant of the Fibonacci 3-numbers A003269 [Stakhov et al.]. - R. J. Mathar, Nov 05 2008

Examples

			1.380277569...
The four solutions are the present one, -A230151, and the two complex ones 0.2194474721... - 0.9144736629...*i and its complex conjugate. - _Wolfdieter Lang_, Aug 19 2022
		

Crossrefs

Cf. -A230151 (other real root).
Cf. A060006.

Programs

  • Mathematica
    RealDigits[Root[ -1 - #1^3 + #1^4 &, 2], 10, 110][[1]]
  • PARI
    polrootsreal( x^4-x^3-1)[2] \\ Charles R Greathouse IV, Apr 14 2014
    
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^4 - x^3 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b086106.txt", n, " ", d));  \\ Iain Fox, Oct 23 2017

Formula

Equals (1 + (A^2 + sqrt(A^4 - 16*u*A^2 + 2*A))/A)/4 with A = sqrt(8*u + 3/2), u = (-(Bp/2)^(1/3) + (Bm/2)^(1/3)*(1 - sqrt(3)*i)/2 - 3/8)/6, with Bp = 27 + 3*sqrt(3*283), Bm = 27 - 3*sqrt(3*283), and i = sqrt(-1). (Standard computation of a quartic.) The other (negative) real root -A230151 is obtained by using in the first formula the negative square root. The other two complex roots are obtained by replacing A by -A in these two formulas. - Wolfdieter Lang, Aug 19 2022

A014097 a(n) = a(n-1)+a(n-4).

Original entry on oeis.org

1, 1, 1, 5, 6, 7, 8, 13, 19, 26, 34, 47, 66, 92, 126, 173, 239, 331, 457, 630, 869, 1200, 1657, 2287, 3156, 4356, 6013, 8300, 11456, 15812, 21825, 30125, 41581, 57393, 79218, 109343, 150924, 208317, 287535
Offset: 1

Views

Author

Keywords

Comments

Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 4 sites wide.
This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1...m-1, a(m) = m+1. The generating function is (x+m*x^m)/(1-x-x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n-1-(m-1)*i, i-1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m=2: A000204, m=3: A001609, m=4: A014097, m=5: A058368, m=6: A058367, m=7: A058366, m=8: A058365, m=9: A058364.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,1},{1,1,1,5},40] (* Harvey P. Dale, Mar 06 2016 *)
  • Maxima
    a(n):=sum(binomial(n-3*j,n-4*j)*n/(n-3*j),j,0,(n-1)/3); /* Vladimir Kruchinin, Mar 25 2016 */
    
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,0,0,1]^(n-1)*[1;1;1;5])[1,1] \\ Charles R Greathouse IV, Sep 09 2016

Formula

G.f.: -x*(1+4*x^3)/(-1+x+x^4). a(n)= 4*A003269(n)-3*A003269(n-1). - R. J. Mathar, Nov 16 2007
a(n) = Sum_{j=0..(n-1)/3}(binomial(n-3*j,n-4*j)*n/(n-3*j)). - Vladimir Kruchinin, Mar 25 2016
From Greg Dresden, Aug 23 2019: (Start)
a(n) = r1^n + r2^n + r3^n + r4^n, where {r1,r2,r3,r4} are the four roots of x^4-x^3-1=0, see A086106, A230151.
a(n) = round(r^n) for n>21 and r the positive real root of x^4-x^3-1.
(End)

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000

A230152 Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=4.

Original entry on oeis.org

8, 5, 6, 6, 7, 4, 8, 8, 3, 8, 5, 4, 5, 0, 2, 8, 7, 4, 8, 5, 2, 3, 2, 4, 8, 1, 5, 3, 1, 2, 4, 3, 4, 3, 6, 9, 8, 3, 1, 3, 9, 9, 9, 4, 5, 4, 9, 3, 7, 5, 2, 6, 2, 5, 5, 7, 6, 4, 1, 2, 8, 1, 0, 3, 4, 6, 7, 9, 8, 4, 2, 4, 6, 2, 2, 9, 0, 4, 3, 6, 2, 1, 1, 0, 3, 5, 1
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-4.

Examples

			0.8566748838545028748523248153124343698313999454937526255...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-4);
  • Mathematica
    Root[x^5 + x^4 - 1, 1] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230158 Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=10.

Original entry on oeis.org

9, 3, 6, 0, 6, 9, 1, 1, 1, 0, 7, 7, 7, 5, 8, 3, 7, 8, 3, 9, 7, 1, 9, 1, 4, 8, 7, 5, 7, 0, 2, 9, 6, 2, 0, 3, 4, 3, 6, 0, 7, 1, 4, 7, 8, 2, 0, 6, 4, 8, 5, 0, 8, 4, 9, 9, 6, 5, 3, 3, 7, 2, 6, 8, 5, 5, 6, 3, 9, 5, 0, 6, 3, 9, 2, 7, 3, 5, 4, 3, 2, 6, 4, 9, 6, 9, 7
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-10.

Examples

			0.9360691110777583783971914875702962034360714782064850849...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-10);
  • Mathematica
    Root[x^11 + x^10 - 1, 1] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)
  • PARI
    polrootsreal(x^11+x^10-1)[1] \\ Charles R Greathouse IV, Feb 07 2025

A230154 Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=6.

Original entry on oeis.org

8, 9, 8, 6, 5, 3, 7, 1, 2, 6, 2, 8, 6, 9, 9, 2, 9, 3, 2, 6, 0, 8, 7, 5, 7, 2, 2, 0, 4, 6, 8, 0, 5, 8, 8, 6, 2, 6, 0, 4, 4, 8, 2, 2, 0, 0, 9, 3, 4, 3, 9, 6, 9, 6, 6, 8, 5, 5, 3, 1, 5, 5, 6, 5, 4, 7, 3, 2, 5, 8, 4, 7, 0, 1, 7, 2, 1, 9, 7, 8, 2, 4, 6, 8, 7, 6, 8
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-6.

Examples

			0.8986537126286992932608757220468058862604482200934396966...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-6);
  • Mathematica
    RealDigits[x/.FindRoot[x^7+x^6==1,{x,1},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Dec 30 2013 *)

Formula

Equals 1/A230160. - Hugo Pfoertner, Oct 15 2024

A230156 Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=8.

Original entry on oeis.org

9, 2, 1, 5, 9, 9, 3, 1, 9, 6, 3, 3, 9, 8, 3, 0, 0, 6, 2, 9, 9, 4, 3, 0, 3, 1, 5, 2, 0, 1, 9, 6, 9, 3, 9, 4, 2, 5, 3, 6, 8, 0, 3, 8, 4, 2, 5, 3, 3, 7, 0, 7, 8, 9, 8, 7, 9, 6, 5, 4, 5, 1, 6, 4, 4, 4, 7, 1, 4, 5, 9, 4, 2, 4, 9, 1, 7, 4, 3, 0, 8, 2, 7, 9, 1, 7, 9
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-8.

Examples

			0.9215993196339830062994303152019693942536803842533707898...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-8);
  • Mathematica
    Root[x^9 + x^8 - 1, 1] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230157 Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=9.

Original entry on oeis.org

9, 2, 9, 5, 7, 0, 1, 2, 8, 2, 3, 2, 0, 2, 2, 8, 6, 4, 2, 0, 4, 4, 1, 3, 0, 3, 6, 9, 1, 4, 4, 6, 4, 1, 2, 5, 4, 3, 5, 3, 2, 5, 8, 5, 3, 0, 0, 2, 0, 2, 4, 8, 3, 3, 6, 3, 0, 2, 0, 5, 5, 4, 5, 2, 1, 5, 0, 9, 8, 7, 8, 5, 3, 0, 6, 5, 4, 2, 7, 2, 6, 2, 1, 3, 5, 0, 7
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-9.

Examples

			0.9295701282320228642044130369144641254353258530020248336...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-9);
  • Mathematica
    Root[x^10 + x^9 - 1, 2] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230153 Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=5.

Original entry on oeis.org

8, 8, 1, 2, 7, 1, 4, 6, 1, 6, 3, 3, 5, 6, 9, 5, 9, 4, 4, 0, 7, 6, 4, 9, 1, 6, 2, 8, 4, 1, 3, 7, 2, 0, 2, 5, 2, 7, 9, 1, 9, 3, 9, 7, 9, 3, 7, 8, 8, 9, 5, 2, 6, 3, 6, 0, 6, 7, 6, 3, 8, 4, 6, 9, 5, 7, 7, 6, 8, 7, 6, 8, 4, 6, 8, 6, 3, 2, 4, 6, 7, 3, 5, 5, 9, 1, 0
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-5.

Examples

			0.8812714616335695944076491628413720252791939793788952636...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-5);
  • Mathematica
    Root[x^6 + x^5 - 1, 2] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230155 Decimal expansion of the positive real solution of the equation x^(k+1)+x^k-1=0. Case k=7.

Original entry on oeis.org

9, 1, 1, 5, 9, 2, 3, 5, 3, 4, 8, 2, 0, 5, 4, 9, 1, 8, 6, 2, 8, 6, 7, 3, 6, 7, 2, 4, 9, 4, 0, 5, 0, 1, 7, 7, 3, 7, 5, 8, 8, 4, 6, 9, 4, 3, 6, 1, 4, 1, 3, 9, 4, 6, 9, 5, 5, 7, 6, 2, 6, 5, 3, 9, 2, 3, 4, 4, 3, 4, 8, 8, 2, 5, 2, 4, 0, 4, 1, 2, 8, 9, 8, 9, 5, 8, 0, 1, 2, 7, 5, 4, 7, 3, 9, 0, 7, 0, 9, 4, 3, 0, 0, 0, 1, 9, 6, 8, 6, 8, 7, 3, 6, 8, 9, 5, 6, 5, 8, 7, 3, 2, 9, 6, 8, 1, 6, 2, 9, 4
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-7.

Examples

			0.9115923534820549186286736724940501773758846943614139469...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-7);
  • Mathematica
    Root[x^8 + x^7 - 1, 2] // RealDigits[#, 10, 130]& // First (* Jean-François Alcover, Feb 18 2014 *)
Showing 1-9 of 9 results.