cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A167287 Signature sequence of Pisot number 1.3802775690976206... (A086106).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 1, 8, 4, 7, 3, 6, 2, 9, 5, 1, 8, 4, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4, 11, 7, 3, 10, 6, 2, 9, 5, 12, 1, 8, 4, 11, 7, 3, 10, 6, 13, 2, 9, 5, 12, 1, 8, 4, 11, 7, 14, 3, 10, 6, 13, 2, 9, 5, 12, 1, 8, 15, 4, 11, 7, 14, 3, 10, 6, 13, 2, 9, 16
Offset: 1

Views

Author

Roger L. Bagula, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    m = x /. Solve[x^4 - x^3 - 1 == 0, x][[4]]
    Take[Transpose[Sort[Flatten[Table[{i + j*m, i}, {i, 25}, {j, 17}], 1], #1[[1]] < #2[[1]] &]][[2]], 95]

A003269 a(n) = a(n-1) + a(n-4) with a(0) = 0, a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, 131, 181, 250, 345, 476, 657, 907, 1252, 1728, 2385, 3292, 4544, 6272, 8657, 11949, 16493, 22765, 31422, 43371, 59864, 82629, 114051, 157422, 217286, 299915, 413966, 571388, 788674, 1088589, 1502555, 2073943
Offset: 0

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0..m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..n/m} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
For this family of sequences, a(n+1) is the number of compositions of n+1 into parts 1 and m. For n>=m, a(n-m+1)is the number of compositions of n in which each part is greater than m or equivalently, in which parts 1 through m are excluded. - Gregory L. Simay, Jul 14 2016
For this family of sequences, let a(m,n) = a(n-1) + a(n-m). Then the number of compositions of n having m as a least summand is a(m, n-m) - a(m+1, n-m-1). - Gregory L. Simay, Jul 14 2016
For n>=3, a(n-3) = number of compositions of n in which each part is >=4. - Milan Janjic, Jun 28 2010
For n>=1, number of compositions of n into parts == 1 (mod 4). Example: a(8)=5 because there are 5 compositions of 8 into parts 1 or 5: (1,1,1,1,1,1,1,1), (1,1,1,5), (1,1,5,1), (1,5,1,1), (5,1,1,1). - Adi Dani, Jun 16 2011
a(n+1) is the number of compositions of n into parts 1 and 4. - Joerg Arndt, Jun 25 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=4, 2*a(n-3) equals the number of 2-colored compositions of n with all parts >= 4, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=3, I={1,2}. - Vladimir Baltic, Mar 07 2012
a(n+4) equals the number of binary words of length n having at least 3 zeros between every two successive ones. - Milan Janjic, Feb 07 2015
From Clark Kimberling, Jun 13 2016: (Start)
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*.
Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3, 2*x, x+1, x^2}, etc.
Let T(r) be the tree obtained by substituting r for x.
If N is a positive integer such that r = N^(1/4) is not an integer, then the number of (not necessarily distinct) integers in g(n) is A003269(n), for n > = 1. See A274142. (End)

Examples

			G.f.: x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 10*x^10 + ...
The number of compositions of 12 having 4 as a least summand is a(4, 12 -4 + 1) - a(5, 12 - 5 + 1) = A003269(9) - A003520(8) = 7-4 = 3. The compositions are (84), (48) and (444). - _Gregory L. Simay_, Jul 14 2016
		

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 120.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A017898 for an essentially identical sequence.
Row sums of A180184.

Programs

  • Haskell
    a003269 n = a003269_list !! n
    a003269_list = 0 : 1 : 1 : 1 : zipWith (+) a003269_list
                                              (drop 3 a003269_list)
    -- Reinhard Zumkeller, Feb 27 2011
    
  • Magma
    I:=[0,1,1,1]; [n le 4 select I[n] else Self(n-1) + Self(n-4) :n in [1..50]]; // Marius A. Burtea, Sep 13 2019
    
  • Maple
    with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 3)}, unlabeled]: seq(count(SeqSetU, size=j), j=4..51);
    seq(add(binomial(n-3*k,k),k=0..floor(n/3)),n=0..47); # Zerinvary Lajos, Apr 03 2007
    A003269:=z/(1-z-z**4); # Simon Plouffe in his 1992 dissertation
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 3)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=3..50); # Zerinvary Lajos, Mar 26 2008
    M:= Matrix(4, (i,j)-> if j=1 then [1,0,0,1][i] elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n))[1,2]; seq(a(n), n=0..48); # Alois P. Heinz, Jul 27 2008
  • Mathematica
    a[0]= 0; a[1]= a[2]= a[3]= 1; a[n_]:= a[n]= a[n-1] + a[n-4]; Table[a[n], {n,0,50}]
    CoefficientList[Series[x/(1-x-x^4), {x,0,50}], x] (* Zerinvary Lajos, Mar 29 2007 *)
    Table[Sum[Binomial[n-3*i-1,i], {i,0,(n-1)/3}], {n,0,50}]
    LinearRecurrence[{1,0,0,1}, {0,1,1,1}, 50] (* Robert G. Wilson v, Jul 12 2014 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,a+d}; NestList[nxt,{0,1,1,1},50][[;;,1]] (* Harvey P. Dale, May 27 2024 *)
  • PARI
    {a(n) = polcoeff( if( n<0, (1 + x^3) / (1 + x^3 - x^4), 1 / (1 - x - x^4)) + x * O(x^abs(n)), abs(n))} /* Michael Somos, Jul 12 2003 */
    
  • SageMath
    @CachedFunction
    def a(n): return ((n+2)//3) if (n<4) else a(n-1) + a(n-4) # a = A003269
    [a(n) for n in (0..50)] # G. C. Greubel, Jul 25 2022

Formula

G.f.: x/(1-x-x^4).
G.f.: -1 + 1/(1-Sum_{k>=0} x^(4*k+1)).
a(n) = a(n-3) + a(n-4) + a(n-5) + a(n-6) for n>4.
a(n) = floor(d*c^n + 1/2) where c is the positive real root of -x^4+x^3+1 and d is the positive real root of 283*x^4-18*x^2-8*x-1 (c=1.38027756909761411... and d=0.3966506381592033124...). - Benoit Cloitre, Nov 30 2002
Equivalently, a(n) = floor(c^(n+3)/(c^4+3) + 1/2) with c as defined above (see A086106). - Greg Dresden and Shuer Jiang, Aug 31 2019
a(n) = term (1,2) in the 4 X 4 matrix [1,1,0,0; 0,0,1,0; 0,0,0,1; 1,0,0,0]^n. - Alois P. Heinz, Jul 27 2008
From Paul Barry, Oct 20 2009: (Start)
a(n+1) = Sum_{k=0..n} C((n+3*k)/4,k)*((1+(-1)^(n-k))/2 + cos(Pi*n/2))/2;
a(n+1) = Sum_{k=0..n} C(k,floor((n-k)/3))(2*cos(2*Pi*(n-k)/3)+1)/3. (End)
a(n) = Sum_{j=0..(n-1)/3} binomial(n-1-3*j,j) (cf. A180184). - Vladimir Kruchinin, May 23 2011
A017817(n) = a(-4 - n) * (-1)^n. - Michael Somos, Jul 12 2003
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(2*k+1 + x^3)/( x*(2*k+2 + x^3) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 29 2013
Appears a(n) = hypergeometric([1/4-n/4,1/2-n/4,3/4-n/4,1-n/4], [1/3-n/3,2/3-n/3,1-n/3], -4^4/3^3) for n>=10. - Peter Luschny, Sep 18 2014

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
Initial 0 prepended by N. J. A. Sloane, Apr 09 2008

A060006 Decimal expansion of real root of x^3 - x - 1 (the plastic constant).

Original entry on oeis.org

1, 3, 2, 4, 7, 1, 7, 9, 5, 7, 2, 4, 4, 7, 4, 6, 0, 2, 5, 9, 6, 0, 9, 0, 8, 8, 5, 4, 4, 7, 8, 0, 9, 7, 3, 4, 0, 7, 3, 4, 4, 0, 4, 0, 5, 6, 9, 0, 1, 7, 3, 3, 3, 6, 4, 5, 3, 4, 0, 1, 5, 0, 5, 0, 3, 0, 2, 8, 2, 7, 8, 5, 1, 2, 4, 5, 5, 4, 7, 5, 9, 4, 0, 5, 4, 6, 9, 9, 3, 4, 7, 9, 8, 1, 7, 8, 7, 2, 8, 0, 3, 2, 9, 9, 1
Offset: 1

Views

Author

Fabian Rothelius, Mar 14 2001

Keywords

Comments

Has been also called the silver number, also the plastic number.
This is the smallest Pisot-Vijayaraghavan number.
The name "plastic number" goes back to the Dutch Benedictine monk and architect Dom Hans van der Laan, who gave this name 4 years after the discovery of the number by the French engineer Gérard Cordonnier in 1924, who used the name "radiant number". - Hugo Pfoertner, Oct 07 2018
Sometimes denoted by the symbol rho. - Ed Pegg Jr, Feb 01 2019
Also the solution of 1/x + 1/(1+x+x^2) = 1. - Clark Kimberling, Jan 02 2020
Given any complex p such that real(p)>-1, this constant is the only real solution of the equation z^p+z^(p+1)=z^(p+3), and the only attractor of the complex mapping z->M(z,p), where M(z,p)=(z^p+z^(p+1))^(1/(p+3)), convergent from any complex plane point. - Stanislav Sykora, Oct 14 2021
The Pisot-Vijayaraghavan numbers were named after the French mathematician Charles Pisot (1910-1984) and the Indian mathematician Tirukkannapuram Vijayaraghavan (1902-1955). - Amiram Eldar, Apr 02 2022
The sequence a(n) = v_3^floor(n^2/4) where v_n is the smallest, positive, real solution to the equation (v_n)^n = v_n + 1 satisfies the Somos-5 recursion a(n+3)*a(n-2) = a(n+2)*a(n-1) + a(n+1)*a(n) for all n in Z. Also true if floor is removed. - Michael Somos, Mar 24 2023

Examples

			1.32471795724474602596090885447809734...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
  • Midhat J. Gazalé, Gnomon: From Pharaohs to Fractals, Princeton University Press, Princeton, NJ, 1999, see Chap. VII.
  • Donald E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4, p. 236.
  • Ian Stewart, A Guide to Computer Dating (Feedback), Scientific American, Vol. 275 No. 5, November 1996, p. 118.

Crossrefs

Cf. A001622. A072117 gives continued fraction.
Other Pisot numbers: A086106, A092526, A228777, A293506, A293508, A293509, A293557.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ((3+Sqrt(23/3))/6)^(1/3) + ((3-Sqrt(23/3))/6)^(1/3); // G. C. Greubel, Mar 15 2019
    
  • Maple
    (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3) ; evalf(%,130) ; # R. J. Mathar, Jan 22 2013
  • Mathematica
    RealDigits[ Solve[x^3 - x - 1 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Sep 30 2009 *)
    s = Sqrt[23/108]; RealDigits[(1/2 + s)^(1/3) + (1/2 - s)^(1/3), 10, 111][[1]] (* Robert G. Wilson v, Dec 12 2017 *)
    RealDigits[Root[x^3-x-1,1],10,120][[1]] (* or *) RealDigits[(Surd[9-Sqrt[69],3]+Surd[9+Sqrt[69],3])/(Surd[2,3]Surd[9,3]),10,120][[1]] (* Harvey P. Dale, Sep 04 2018 *)
  • PARI
    allocatemem(932245000); default(realprecision, 20080); x=solve(x=1, 2, x^3 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b060006.txt", n, " ", d)); \\ Harry J. Smith, Jul 01 2009
    
  • PARI
    (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3) \\ Altug Alkan, Apr 10 2016
    
  • PARI
    polrootsreal(x^3-x-1)[1] \\ Charles R Greathouse IV, Aug 28 2016
    
  • PARI
    default(realprecision, 110); digits(floor(solve(x=1, 2, x^3 - x - 1)*10^105)) /* Michael Somos, Mar 24 2023 */
    
  • Sage
    numerical_approx(((3+sqrt(23/3))/6)^(1/3) + ((3-sqrt(23/3))/6)^(1/3), digits=100) # G. C. Greubel, Mar 15 2019

Formula

Equals (1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3). - Henry Bottomley, May 22 2003
Equals CubeRoot(1 + CubeRoot(1 + CubeRoot(1 + CubeRoot(1 + ...)))). - Gerald McGarvey, Nov 26 2004
Equals sqrt(1+1/sqrt(1+1/sqrt(1+1/sqrt(1+...)))). - Gerald McGarvey, Mar 18 2006
Equals (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3). - Eric Desbiaux, Oct 17 2008
Equals Sum_{k >= 0} 27^(-k)/k!*(Gamma(2*k+1/3)/(9*Gamma(k+4/3)) - Gamma(2*k-1/3)/(3*Gamma(k+2/3))). - Robert Israel, Jan 13 2015
Equals sqrt(Phi) = sqrt(1.754877666246...) (see A109134). - Philippe Deléham, Sep 29 2020
Equals cosh(arccosh(3*c)/3)/c, where c = sqrt(3)/2 (A010527). - Amiram Eldar, May 15 2021
Equals 1/hypergeom([1/5, 2/5, 3/5, 4/5], [2/4, 3/4, 5/4], -5^5/4^4). - Gerry Martens, Mar 16 2025

Extensions

Edited and extended by Robert G. Wilson v, Aug 03 2002
Removed incorrect comments, Joerg Arndt, Apr 10 2016

A092526 Decimal expansion of (2/3)*cos( (1/3)*arccos(29/2) ) + 1/3, the real root of x^3 - x^2 - 1.

Original entry on oeis.org

1, 4, 6, 5, 5, 7, 1, 2, 3, 1, 8, 7, 6, 7, 6, 8, 0, 2, 6, 6, 5, 6, 7, 3, 1, 2, 2, 5, 2, 1, 9, 9, 3, 9, 1, 0, 8, 0, 2, 5, 5, 7, 7, 5, 6, 8, 4, 7, 2, 2, 8, 5, 7, 0, 1, 6, 4, 3, 1, 8, 3, 1, 1, 1, 2, 4, 9, 2, 6, 2, 9, 9, 6, 6, 8, 5, 0, 1, 7, 8, 4, 0, 4, 7, 8, 1, 2, 5, 8, 0, 1, 1, 9, 4, 9, 0, 9, 2, 7, 0, 0, 6, 4, 3, 8
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2004

Keywords

Comments

This is the limit x of the ratio N(n+1)/N(n) for n -> infinity of the Narayana sequence N(n) = A000930(n). The real root of x^3 - x^2 - 1. See the formula section. - Wolfdieter Lang, Apr 24 2015
This is the fourth smallest Pisot number. - Iain Fox, Oct 13 2017
Sometimes called the supergolden ratio or Narayana's cows constant, and denoted by the symbol psi. - Ed Pegg Jr, Feb 01 2019

Examples

			1.46557123187676802665673122521993910802557756847228570164318311124926...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.3.
  • Paul J. Nahin, The Logician and the Engineer, How George Boole and Claude Shannon Created the Information Age, Princeton University Press, Princeton and Oxford, 2013, Chap. 7: Some Combinational Logic Examples, Section 7.1: Channel Capacity, Shannon's Theorem, and Error-Detection Theory, page 120.

Crossrefs

Other Pisot numbers: A060006, A086106, A228777, A293506, A293508, A293509, A293557.
Cf. A381124 (numerators of convergents).
Cf. A381125 (denominators of convergents).

Programs

  • Mathematica
    RealDigits[(2 Cos[ ArcCos[ 29/2]/3] + 1)/3, 10, 111][[1]] (* Robert G. Wilson v, Apr 12 2004 *)
    RealDigits[ Solve[ x^3 - x^2 - 1 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Oct 10 2013 *)
  • PARI
    allocatemem(932245000); default(realprecision, 20080); x=solve(x=1, 2, x^3 - x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b092526.txt", n, " ", d));  \\ Harry J. Smith, Jun 21 2009

Formula

The real root of x^3 - x^2 - 1. - Franklin T. Adams-Watters, Oct 12 2006
The only real irrational root of x^4-x^2-x-1 (-1 is also a root). [Nahim]
Equals (2/3)*cos( (1/3)*arccos(29/2) ) + 1/3.
Equals 1 + A088559.
Equals (1/6)*(116+12*sqrt(93))^(1/3) + 2/(3*(116+12*sqrt(93))^(1/3)) + 1/3. - Vaclav Kotesovec, Dec 18 2014
Equals 1/A263719. - Alois P. Heinz, Apr 15 2018
Equals (1 + 1/r + r)/3 where r = ((29 + sqrt(837))/2)^(1/3). - Peter Luschny, Apr 04 2020
Equals (1/3)*(1 + ((1/2)*(29 + (3*sqrt(93))))^(1/3) + ((1/2)*(29 - 3*sqrt(93)))^(1/3)). See A075778. - Wolfdieter Lang, Aug 17 2022

A293506 Decimal expansion of real root of x^5 - x^4 - x^2 - 1.

Original entry on oeis.org

1, 5, 7, 0, 1, 4, 7, 3, 1, 2, 1, 9, 6, 0, 5, 4, 3, 6, 2, 9, 1, 0, 6, 6, 5, 4, 3, 5, 1, 3, 7, 1, 2, 6, 5, 5, 3, 8, 7, 3, 1, 3, 1, 6, 0, 7, 4, 2, 4, 5, 2, 7, 4, 3, 6, 9, 3, 1, 6, 5, 4, 8, 7, 7, 8, 9, 7, 3, 3, 0, 6, 6, 1, 5, 4, 4, 1, 6, 2, 3, 2, 0, 2, 2, 2, 7, 6
Offset: 1

Views

Author

Iain Fox, Oct 10 2017

Keywords

Comments

This root is also the ninth smallest of the Pisot numbers.
The ratio of successive terms of A122115 converges to this number.

Examples

			1.570147312196054362910665...
		

Crossrefs

Programs

  • Mathematica
    First@ RealDigits[Root[#^5 - #^4 - #^2 - 1 &, 1], 10, 87] (* Michael De Vlieger, Oct 23 2017 *)
  • PARI
    solve(x=1, 2, x^5 - x^4 - x^2 - 1) \\ Michel Marcus, Oct 11 2017
    
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^5 - x^4 - x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293506.txt", n, " ", d));

Extensions

More terms from Andrey Zabolotskiy, Oct 12 2017

A014097 a(n) = a(n-1)+a(n-4).

Original entry on oeis.org

1, 1, 1, 5, 6, 7, 8, 13, 19, 26, 34, 47, 66, 92, 126, 173, 239, 331, 457, 630, 869, 1200, 1657, 2287, 3156, 4356, 6013, 8300, 11456, 15812, 21825, 30125, 41581, 57393, 79218, 109343, 150924, 208317, 287535
Offset: 1

Views

Author

Keywords

Comments

Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 4 sites wide.
This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1...m-1, a(m) = m+1. The generating function is (x+m*x^m)/(1-x-x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n-1-(m-1)*i, i-1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m=2: A000204, m=3: A001609, m=4: A014097, m=5: A058368, m=6: A058367, m=7: A058366, m=8: A058365, m=9: A058364.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,1},{1,1,1,5},40] (* Harvey P. Dale, Mar 06 2016 *)
  • Maxima
    a(n):=sum(binomial(n-3*j,n-4*j)*n/(n-3*j),j,0,(n-1)/3); /* Vladimir Kruchinin, Mar 25 2016 */
    
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,0,0,1]^(n-1)*[1;1;1;5])[1,1] \\ Charles R Greathouse IV, Sep 09 2016

Formula

G.f.: -x*(1+4*x^3)/(-1+x+x^4). a(n)= 4*A003269(n)-3*A003269(n-1). - R. J. Mathar, Nov 16 2007
a(n) = Sum_{j=0..(n-1)/3}(binomial(n-3*j,n-4*j)*n/(n-3*j)). - Vladimir Kruchinin, Mar 25 2016
From Greg Dresden, Aug 23 2019: (Start)
a(n) = r1^n + r2^n + r3^n + r4^n, where {r1,r2,r3,r4} are the four roots of x^4-x^3-1=0, see A086106, A230151.
a(n) = round(r^n) for n>21 and r the positive real root of x^4-x^3-1.
(End)

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000

A230151 Decimal expansion of the positive real solution of the equation x^4 + x^3 - 1 = 0.

Original entry on oeis.org

8, 1, 9, 1, 7, 2, 5, 1, 3, 3, 9, 6, 1, 6, 4, 4, 3, 9, 6, 9, 9, 5, 7, 1, 1, 8, 8, 3, 4, 2, 4, 2, 7, 0, 4, 0, 3, 4, 8, 4, 9, 7, 8, 3, 2, 5, 5, 3, 7, 1, 2, 9, 6, 5, 6, 6, 7, 6, 8, 0, 2, 5, 3, 1, 6, 7, 4, 2, 8, 6, 0, 9, 3, 3, 0, 8, 7, 1, 3, 7, 0, 3, 1, 9, 6, 2
Offset: 0

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=-3.

Examples

			0.8191725133961644396995711883424270403484978325537129656...
		

Crossrefs

Cf. A086106 (other real root).

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,-3);
  • Mathematica
    Root[(#^4+#^3-1)&, 2] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)
  • PARI
    polrootsreal(x^4+x^3-1)[2] \\ Charles R Greathouse IV, Feb 04 2025

A228777 Decimal expansion of the third smallest Pisot-Vijayaraghavan number.

Original entry on oeis.org

1, 4, 4, 3, 2, 6, 8, 7, 9, 1, 2, 7, 0, 3, 7, 3, 1, 0, 7, 6, 2, 8, 1, 2, 7, 6, 0, 7, 3, 8, 6, 9, 1, 1, 6, 0, 4, 6, 7, 6, 0, 1, 1, 9, 6, 6, 6, 5, 4, 5, 7, 1, 5, 9, 8, 4, 0, 9, 2, 3, 3, 7, 9, 3, 6, 2, 3, 7, 8, 4, 8, 3, 7, 8, 7, 4, 1, 8, 9, 0, 5, 0, 0, 3, 7, 5, 9, 0, 0, 7
Offset: 1

Views

Author

R. J. Mathar, Sep 04 2013

Keywords

Examples

			1.443268791270373107628127607386...
		

Crossrefs

Programs

  • Maple
    fsolve(x^5-x^4-x^3+x^2-1,x,1.4..1.5) ;
  • Mathematica
    Root[Function[x, x^5-x^4-x^3+x^2-1], 1] // RealDigits[#, 10, 90]& // First (* Jean-François Alcover, Feb 20 2014 *)
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^5 - x^4 - x^3 + x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b228777.txt", n, " ", d));  \\ Iain Fox, Oct 23 2017

Formula

A root of x^5-x^4-x^3+x^2-1.

A293508 Decimal expansion of the positive real root of x^6 - x^5 - x^4 + x^2 - 1.

Original entry on oeis.org

1, 5, 0, 1, 5, 9, 4, 8, 0, 3, 5, 3, 9, 0, 8, 7, 3, 6, 6, 3, 7, 7, 7, 8, 3, 1, 2, 7, 3, 7, 1, 0, 4, 6, 1, 0, 8, 4, 8, 6, 3, 9, 8, 3, 3, 6, 2, 5, 3, 5, 8, 5, 3, 4, 2, 2, 4, 8, 3, 9, 4, 1, 8, 6, 0, 6, 3, 3, 4, 3, 6, 1, 2, 5, 9, 7, 1, 2, 8, 8, 9, 8, 1, 3, 4, 1, 1, 4, 2, 4, 6, 0, 2, 9, 2, 0, 0, 2, 0, 1, 7, 2, 5, 5, 8
Offset: 1

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

This root is also the fifth smallest of the Pisot numbers.

Examples

			1.501594803539087366377783...
		

Crossrefs

Programs

  • Mathematica
    First@ RealDigits[Root[#^6 - #^5 - #^4 + #^2 - 1 &, 2], 10, 105] (* Michael De Vlieger, Oct 23 2017 *)
  • PARI
    solve(x=1, 2, x^6 - x^5 - x^4 + x^2 - 1) \\ Michel Marcus, Oct 11 2017
    
  • PARI
    { default(realprecision, 20080); x=solve(x=1, 2, x^6 - x^5 - x^4 + x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293508.txt", n, " ", d)); }

A293509 Decimal expansion of real root of x^5 - x^3 - x^2 - x - 1.

Original entry on oeis.org

1, 5, 3, 4, 1, 5, 7, 7, 4, 4, 9, 1, 4, 2, 6, 6, 9, 1, 5, 4, 3, 5, 9, 7, 0, 0, 7, 6, 1, 0, 9, 3, 7, 5, 7, 0, 1, 8, 8, 2, 5, 4, 5, 0, 3, 8, 5, 1, 6, 5, 9, 5, 1, 3, 5, 3, 6, 8, 5, 3, 1, 8, 6, 3, 0, 0, 8, 0, 6, 3, 0, 2, 3, 2, 1, 4, 0, 8, 2, 2, 8, 1, 4, 3, 6, 7, 8
Offset: 1

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

This root is also the sixth smallest of the Pisot numbers.

Examples

			1.53415774491426691543597007610937570188254503851659513536853186300806302321...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Solve[ x^5 - x^3 - x^2 - x - 1 == 0, x, WorkingPrecision -> 111][[-1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Nov 04 2017 *)
  • PARI
    solve(x=1, 2, x^5 - x^3 - x^2 - x - 1) \\ Michel Marcus, Oct 13 2017
    
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^5 - x^3 - x^2 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293509.txt", n, " ", d)); \\ Iain Fox, Oct 23 2017
    
  • PARI
    polrootsreal(x^5 - x^3 - x^2 - x - 1)[1] \\ Charles R Greathouse IV, Nov 04 2017
Showing 1-10 of 17 results. Next