cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A217757 Product_{i=0..n} (i! + 1).

Original entry on oeis.org

2, 4, 12, 84, 2100, 254100, 183206100, 923541950100, 37238134969982100, 13513011656042074430100, 49036030210457135734021310100, 1957361459740805606124917565020990100, 937579272951542930363610919638075856505150100
Offset: 0

Views

Author

Jon Perry, Mar 23 2013

Keywords

Crossrefs

Programs

  • JavaScript
    function factorial(n) {
    var i,c=1;
    for (i=2;i<=n;i++) c*=i;
    return c;
    }
    a=2;
    for (j=1;j<10;j++) {
    a*=(factorial(j)+1);
    document.write(a+", ");
    }
  • Maple
    a:= proc(n) a(n):= `if`(n=0, 2, a(n-1)*(n!+1)) end:
    seq(a(n), n=0..14);  # Alois P. Heinz, May 20 2013
  • Mathematica
    Table[Product[i!+1,{i,0,n}],{n,0,12}]  (* Geoffrey Critzer, May 04 2013 *)
    Rest[FoldList[Times,1,Range[0,15]!+1]] (* Harvey P. Dale, May 28 2013 *)

Formula

a(n) ~ c * A000178(n), where c = A238695 = Product_{k>=0} (1 + 1/k!) = 7.364308272367257256372772509631... . - Vaclav Kotesovec, Jul 20 2015

A282529 Decimal expansion of Product_{n>=2} (1-1/n!).

Original entry on oeis.org

3, 9, 5, 3, 3, 8, 5, 6, 7, 3, 6, 7, 4, 4, 5, 5, 6, 6, 0, 3, 2, 3, 5, 6, 2, 0, 0, 4, 3, 1, 1, 8, 0, 6, 1, 3, 0, 2, 6, 6, 5, 6, 4, 8, 6, 7, 5, 8, 7, 2, 0, 1, 3, 2, 5, 0, 1, 1, 9, 7, 3, 9, 0, 1, 5, 1, 7, 4, 1, 6, 2, 0, 3, 8, 4, 7, 7, 5, 6, 1, 2, 6, 7, 0, 9, 2, 0, 0, 7, 7, 9, 3, 8, 9, 1, 0, 2, 2, 7, 0, 1, 1, 5, 8, 6, 8, 5, 4, 9, 6, 4, 0, 8, 4, 6, 7
Offset: 0

Views

Author

Lucian Craciun, Feb 22 2017

Keywords

Comments

Conjectured to be irrational, transcendental and normal, none have been shown.

Examples

			0.39533856736744556603235620043118061302665648675872...
		

Crossrefs

Programs

Formula

Equals 1/A247551. - Amiram Eldar, Sep 15 2023

A269700 a(n) = floor( Product_{k>=0} (1 + n/k!) ).

Original entry on oeis.org

1, 7, 26, 69, 151, 293, 519, 862, 1361, 2062, 3019, 4297, 5969, 8121, 10848, 14261, 18481, 23646, 29908, 37437, 46419, 57061, 69586, 84242, 101297, 121042, 143793, 169893, 199710, 233642, 272117, 315592, 364560, 419545, 481109, 549849, 626403, 711448, 805703
Offset: 0

Views

Author

Daniel Suteu, Mar 03 2016

Keywords

Examples

			For n=3, a(3) = floor(69.52294621467075235981513247145953...) = 69.
		

Crossrefs

Cf. A238695.

Programs

  • Mathematica
    Table[Floor@ Product[1 + n/k!, {k, 0, 10^2}], {n, 0, 38}] (* Michael De Vlieger, Mar 27 2016 *)
  • PARI
    a(n) = floor(prodinf(k=0, 1+n/k!)); \\ Michel Marcus, Mar 04 2016
  • Sidef
    func a(n) {
        var (prod=1, prev=1)
        for i in (0 ..^ Inf) {
            prod *= (1 + n/i!)
            break if (prod/prev <= 1+1e-100)
            prev = prod
        }
        return floor(prod)
    }
    range(0, 100).each { |n| say a(n) }
    

A325050 a(n) = Product_{k=0..n} (k!^2 + 1).

Original entry on oeis.org

2, 4, 20, 740, 426980, 6148938980, 3187616116170980, 80970552724144881738980, 131634021973939424914920841290980, 17333817381151204925617274632152908873802980, 228254990993381085562170532497621436371926846785405002980
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k!^2 + 1, {k, 0, n}], {n, 0, 12}]
    Table[BarnesG[n+2]^2 * Product[1 + 1/k!^2, {k, 0, n}], {n, 0, 12}]

Formula

a(n) ~ c * n^(n^2 + 2*n + 5/6) * (2*Pi)^(n+1) / (A^2 * exp(3*n^2/2 + 2*n - 1/6)), where c = Product_{k>=0} (1 + 1/k!^2) = 5.1481781945902396880952694880498895... and A is the Glaisher-Kinkelin constant A074962.

A384510 Decimal expansion of Product_{k>=0} (1 + 1/k!^2).

Original entry on oeis.org

5, 1, 4, 8, 1, 7, 8, 1, 9, 4, 5, 9, 0, 2, 3, 9, 6, 8, 8, 0, 9, 5, 2, 6, 9, 4, 8, 8, 0, 4, 9, 8, 8, 9, 5, 0, 7, 8, 6, 3, 0, 3, 6, 2, 9, 0, 6, 9, 4, 7, 8, 9, 5, 1, 9, 6, 8, 0, 2, 6, 4, 0, 4, 6, 5, 9, 4, 7, 5, 6, 4, 1, 0, 5, 9, 7, 5, 6, 5, 7, 9, 2, 0, 1, 8, 5, 4, 4, 4, 0, 1, 7, 3, 2, 6, 1, 7, 7, 0, 8, 4, 4, 4, 6, 7
Offset: 1

Views

Author

Kelvin Voskuijl, Aug 14 2025

Keywords

Examples

			5.1481781945902396880952694880498895078630362906948...
		

Crossrefs

Programs

  • PARI
    prodinf(k=0, 1 + 1/k!^2)

A387175 Continued fraction expansion of Product_{k>=0} (1+1/k!).

Original entry on oeis.org

7, 2, 1, 2, 1, 11, 1, 1, 2, 1, 15, 3, 1, 2, 1, 11, 1, 1, 1, 9, 1, 1, 3, 5, 9, 1, 6, 1, 1, 1, 44, 2, 1, 26, 1, 5, 1, 6, 19, 1, 1, 8, 2, 1, 8, 1, 2, 25, 9, 1, 4, 94, 1, 1, 25, 6, 2, 2, 1, 2, 4, 1, 2, 25, 28, 1, 2, 1, 2, 2, 1, 1, 4, 12, 1, 1591, 7, 1, 4, 4, 22, 1, 1, 4, 9, 1, 2, 2, 1, 2, 3, 1
Offset: 1

Views

Author

Kelvin Voskuijl, Aug 20 2025

Keywords

Examples

			7 + 1/(2 + 1/(1 + 1/(...))) = Product_{k>=0} (1+1/k!).
		

Crossrefs

Cf. A238695 (decimal expansion).

Programs

  • Mathematica
    terms= 92; ContinuedFraction[Product[1+1/k!,{k,0,3*terms}],terms] (* Stefano Spezia, Aug 21 2025 *)

A386405 Decimal expansion of Product_{k>=0} (1 + 1/k!^3).

Original entry on oeis.org

4, 5, 2, 1, 1, 6, 2, 9, 8, 9, 7, 6, 8, 2, 1, 8, 4, 8, 1, 0, 2, 5, 3, 5, 9, 9, 3, 6, 0, 6, 2, 8, 3, 4, 8, 8, 6, 9, 7, 2, 4, 1, 5, 0, 1, 9, 8, 7, 1, 8, 8, 3, 1, 9, 2, 0, 7, 0, 8, 9, 9, 0, 9, 5, 5, 1, 6, 4, 3, 5, 0, 1, 5, 6, 2, 2, 5, 4, 5, 8, 2, 9, 4, 8, 0, 4, 2, 4, 9, 5, 6, 7, 6, 4, 3, 6, 6, 4, 5, 6, 9, 4, 1, 5, 6
Offset: 1

Views

Author

Kelvin Voskuijl, Aug 20 2025

Keywords

Examples

			4.52116298976821848102535993606283488697241501987188319...
		

Crossrefs

Programs

  • PARI
    prodinf(k=0, 1 + 1/k!^3)
Showing 1-7 of 7 results.