A064702 Nonnegative numbers such that additive and multiplicative digital roots coincide.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 123, 132, 137, 139, 168, 173, 179, 186, 188, 193, 197, 213, 231, 233, 267, 276, 299, 312, 317, 319, 321, 323, 332, 346, 364, 371, 389, 391, 398, 436, 463, 618, 627, 634, 643, 672, 681, 713, 719, 726, 731, 762, 791, 816, 818, 839
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Digital Root
- Eric Weisstein's World of Mathematics, Multiplicative Digital Root
- Wikipedia, Digital root
- Wikipedia, Multiplicative digital root
- Index entries for 10-automatic sequences.
Programs
-
Haskell
a064702 n = a064702_list !! (n-1) a064702_list = filter (\x -> a010888 x == a031347 x) [1..] -- Reinhard Zumkeller, Jul 10 2013
-
Maple
A007954 := proc(n) return mul(d, d=convert(n,base,10)): end: A031347 := proc(n) local m: m:=n: while(length(m)>1)do m:=A007954(m): od: return m: end: A064702 := proc(n) option remember: local k: if(n=1)then return 1:fi: for k from procname(n-1)+1 do if(A031347(k)-1 = (k-1) mod 9)then return k: fi: od: end: seq(A064702(n),n=1..56); # Nathaniel Johnston, May 04 2011
-
Mathematica
okQ[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]== NestWhile[ Total[ IntegerDigits[ #]]&, n,#>9&]; Select[Range[1000],okQ] (* Harvey P. Dale, Apr 20 2011 *)
-
PARI
is(n) = my(cn = n); while(cn > 9, d = digits(cn); cn = prod(i = 1, #d, d[i])); cn - 1 == (n-1)%9 \\ David A. Corneth, Aug 23 2018
-
Python
from math import prod def A010888(n): while n > 9: n = sum(map(int, str(n))) return n def A031347(n): while n > 9: n = prod(map(int, str(n))) return n def ok(n): return A010888(n) == A031347(n) print([k for k in range(840) if ok(k)]) # Michael S. Branicky, Sep 17 2022
Extensions
Definition rephrased by Reinhard Zumkeller, Jul 10 2013
Initial 0 added by Halfdan Skjerning, Aug 21 2018
Comments