A107152 Primes of the form x^2 + 45y^2.
61, 109, 181, 229, 241, 349, 409, 421, 541, 601, 661, 709, 769, 829, 1009, 1021, 1069, 1129, 1201, 1249, 1321, 1381, 1429, 1489, 1549, 1609, 1621, 1669, 1741, 1789, 1801, 1861, 2029, 2089, 2161, 2221, 2269, 2281, 2341, 2389, 2521, 2689, 2749, 3001, 3049, 3061, 3109, 3121, 3169, 3181
Offset: 1
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- William C. Jagy and Irving Kaplansky, Positive definite binary quadratic forms that represent the same primes [Cached copy]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Magma
[ p: p in PrimesUpTo(3000) | p mod 60 in {1, 49 } ]; // Vincenzo Librandi, Jul 24 2012
-
Mathematica
QuadPrimes2[1, 0, 45, 10000] (* see A106856 *) Select[Prime[Range[500]], MatchQ[Mod[#, 60], 1|49]&] (* Jean-François Alcover, Oct 28 2016 *)
-
PARI
list(lim)=my(v=List(),t); forprime(p=61,lim, t=p%60; if(t==1||t==49, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017
Formula
Primes congruent to {1, 49} (mod 60). - T. D. Noe, Apr 29 2008
Comments