A263351 Fixed points of A243625: integers n such that A243625(n)=n.
1, 4, 9, 18, 23, 48, 54, 60, 63, 77, 91, 92, 93, 104, 117, 126, 129, 137, 151, 152, 153, 167, 169, 214, 229, 239, 255, 256, 264, 266, 267, 270, 282, 285, 289, 293, 295, 297, 326, 342, 344, 345, 348, 350, 355, 364, 400, 420, 428, 436, 439, 440, 447, 454, 458
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A243625.
Programs
-
Maple
with(numtheory): b:= proc(n) is(n=1) end: h:= 2: g:= proc(n) option remember; global h; local k, t; if n=1 then 1 else t:=g(n-1); for k from h while b(k) or bigomega(t+k)<>2 do od; b(k):=true; while b(h) do h:=h+1 od; k fi end: a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0, a(n-1)) do if g(k)=k then break fi od: k end: seq(a(n), n=1..100); # Alois P. Heinz, Oct 17 2015
-
Mathematica
b[n_] := n == 1; h = 2; g[n_] := g[n] = Module[{k, t}, If[n == 1, 1, t = g[n - 1]; For[k = h, b[k] || PrimeOmega[t + k] != 2, k++]; b[k] = True; While[b[h], h++]; k]]; a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, 0, a[n - 1]], True, k++, If[g[k] == k, Break[]]]; k]; Array[a, 100] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
Comments