cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A246628 a(1)=1, a(n+1) is the smallest number m such that A244448(a(n)) < A244448(m).

Original entry on oeis.org

1, 2, 10, 635, 1810, 4502, 7598, 11117, 32146, 32770, 58079
Offset: 1

Views

Author

Keywords

Comments

This is the related subsequence of A244448 that gives A244448(a(n)) for each n.

Crossrefs

Extensions

a(8)-a(11) from Jinyuan Wang, Mar 18 2020

A246629 a(n) = A244448(A246628(n)).

Original entry on oeis.org

153, 442, 145416, 174417, 499305, 826312, 1134378, 2452587, 3340976, 3617130, 5141892
Offset: 1

Views

Author

Keywords

Examples

			A244448(A246628(1)) = A244448(1) = 153.
A244448(A246628(2)) = A244448(2) = 442.
A244448(A246628(7)) = A244448(7598) = 1134378.
		

Crossrefs

Extensions

a(8)-a(11) from Jinyuan Wang, Mar 18 2020

A087711 a(n) = smallest number k such that both k-n and k+n are primes.

Original entry on oeis.org

2, 4, 5, 8, 7, 8, 11, 10, 11, 14, 13, 18, 17, 16, 17, 22, 21, 20, 23, 22, 23, 26, 25, 30, 29, 28, 33, 32, 31, 32, 37, 36, 35, 38, 37, 38, 43, 42, 41, 44, 43, 48, 47, 46, 57, 52, 51, 50, 53, 52, 53, 56, 55, 56, 59, 58, 75, 70, 69, 72, 67, 66, 65, 68, 67, 72, 71, 70, 71, 80, 81, 78
Offset: 0

Views

Author

Zak Seidov, Sep 28 2003

Keywords

Comments

Let b(n), c(n) and d(n) be respectively, smallest number m such that phi(m-n) + sigma(m+n) = 2n, smallest number m such that phi(m+n) + sigma(m-n) = 2n and smallest number m such that phi(m-n) + sigma(m+n) = phi(m+n) + sigma(m-n), we conjecture that for each positive integer n, a(n)=b(n)=c(n)=d(n). Namely we conjecture that for each positive integer n, a(n) < A244446(n), a(n) < A244447(n) and a(n) < A244448(n). - Jahangeer Kholdi and Farideh Firoozbakht, Sep 05 2014

Examples

			n=10: k=13 because 13-10 and 13+10 are both prime and 13 is the smallest k such that k +/- 10 are both prime
4-1=3, prime, 4+1=5, prime; 5-2=3, 5+2=7; 8-3=5, 8+3=11; 9-4=5, 9+4=13, ...
		

Crossrefs

Programs

  • Magma
    distance:=function(n); k:=n+2; while not IsPrime(k-n) or not IsPrime(k+n) do k:=k+1; end while; return k; end function; [ distance(n): n in [1..71] ]; /* Klaus Brockhaus, Apr 08 2007 */
    
  • Maple
    Primes:= select(isprime,{seq(2*i+1,i=1..10^3)}):
    a[0]:= 2:
    for n from 1 do
      Q:= Primes intersect map(t -> t-2*n,Primes);
      if nops(Q) = 0 then break fi;
      a[n]:= min(Q) + n;
    od:
    seq(a[i],i=0..n-1); # Robert Israel, Sep 08 2014
  • Mathematica
    s = ""; k = 0; For[i = 3, i < 22^2, If[PrimeQ[i - k] && PrimeQ[i + k], s = s <> ToString[i] <> ","; k++ ]; i++ ]; Print[s] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2008 *)
    snk[n_]:=Module[{k=n+1},While[!PrimeQ[k+n]||!PrimeQ[k-n],k++];k]; Array[ snk,80,0] (* Harvey P. Dale, Dec 13 2020 *)
  • PARI
    a(n)=my(k);while(!isprime(k-n) || !isprime(k+n),k++);return(k) \\ Edward Jiang, Sep 05 2014

Formula

a(n) = A020483(n)+n for n >= 1. - Robert Israel, Sep 08 2014

Extensions

Entries checked by Klaus Brockhaus, Apr 08 2007

A244446 a(n) is the smallest integer m such that m-n is composite and phi(m-n) + sigma(m+n) = 2*m.

Original entry on oeis.org

25, 323, 48, 34, 53, 471, 58, 78, 84, 76, 71, 122, 64, 144, 162, 118, 74, 188, 106, 258, 156, 2512, 68, 254, 94, 107, 132, 2326, 876, 536, 154, 182, 268, 468, 98, 2061, 106, 408, 264, 286, 258, 1520900, 423, 618, 276, 648, 579, 518, 204, 708, 196, 370, 164, 1088, 300, 1518, 412, 3616, 158, 1226
Offset: 1

Views

Author

Keywords

Comments

For each n, a(n)>n and like a(n)-n, a(n)+n is also composite.
If both numbers p & p+2n are primes the x=p+n is a solution for the equation phi(x-n)+sigma(x+n)=2x. But for these many solutions x, both x-n & x+n are primes.

Examples

			a(1)=25 because 25-1 is composite, phi(25-1)+sigma(25+1)=2*25 and there is no such number less than 25.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(For[m=n+1, PrimeQ[m-n]||EulerPhi[m-n]+DivisorSigma[1,m+n]!=2m,m++];m);Table[a[n],{n,60}]
  • PARI
    a(n)=m=n+4;while(isprime(m-n)||eulerphi(m-n)+sigma(m+n)!=2*m,m++);m
    vector(100,n,a(n)) \\ Derek Orr, Aug 30 2014

A244447 a(n) is the smallest integer m such that m-n is composite and phi(m+n) + sigma(m-n) = 2*m.

Original entry on oeis.org

11, 8, 13, 37350, 25, 18, 28, 20, 61, 22, 44, 40, 52, 250, 39, 60, 68, 60, 58, 76, 168, 46, 92, 69, 2040, 56, 126, 84, 114, 140, 88, 74, 108, 90, 288, 92, 148, 108, 283, 324, 164, 180, 100, 40878, 125, 474, 162, 108, 773, 71, 111, 240, 168, 315, 148, 194, 564, 390, 128, 144, 124, 164, 153, 279, 1008, 162, 102, 152, 432, 222
Offset: 1

Views

Author

Keywords

Comments

For each n, a(n)>n and like a(n)-n, a(n)+n is also composite.
If both numbers p and p+2n are primes then x=p+n is a solution to the equation phi(x+n)+sigma(x-n)=2x. But for these many solutions x, both numbers x-n and x+n are primes.

Examples

			a(1)=11 because 11-1 is composite, phi(11+1)+sigma(11-1)=2*11 and there is no such number less than 11.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(For[m=n+1,PrimeQ[m-n]||EulerPhi[m+n]+DivisorSigma[1,m-n]!=2m,m++];m);Table[a[n],{n,70}]
  • PARI
    a(n)=m=n+4;while(isprime(m-n)||eulerphi(m+n)+sigma(m-n)!=2*m,m++);m
    vector(100,n,a(n)) \\ Derek Orr, Aug 30 2014
Showing 1-5 of 5 results.