A246778 a(n) = floor(prime(n)^(1+1/n)) - prime(n).
2, 2, 3, 4, 6, 6, 8, 8, 9, 11, 11, 12, 13, 13, 13, 14, 15, 15, 16, 16, 16, 17, 17, 18, 19, 19, 19, 19, 19, 19, 21, 21, 22, 21, 22, 22, 22, 23, 23, 23, 24, 23, 24, 24, 24, 24, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 28, 29, 29, 28, 28, 29, 30, 30, 30
Offset: 1
Keywords
References
- Paulo Ribenboim, The little book of bigger primes, second edition, Springer, 2004, p. 185.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
- A. Kourbatov, Verification of the Firoozbakht conjecture for primes up to four quintillion, arXiv:1503.01744 [math.NT], 2015.
- A. Kourbatov, Upper bounds for prime gaps related to Firoozbakht's conjecture, arXiv:1506.03042 [math.NT], 2015.
- A. Kourbatov, Upper bounds for prime gaps related to Firoozbakht's conjecture, Journal of Integer Sequences, 18 (2015), Article 15.11.2.
- Carlos Rivera, Conjecture 30
- Wikipedia, Firoozbakht's conjecture.
- Wikipedia, Prime gap.
Programs
-
Magma
[Floor(NthPrime(n)^(1+1/n)) - NthPrime(n): n in [1..70]]; // Vincenzo Librandi, Mar 24 2015
-
Maple
N:= 10^4: # to get entries corresponding to all primes <= N Primes:= select(isprime, [2,seq(2*i+1,i=1..floor((N-1)/2))]): seq(floor(Primes[n]^(1+1/n) - Primes[n]), n=1..nops(Primes)); # Robert Israel, Mar 23 2015
-
Mathematica
f[n_] := Block[{p = Prime@ n}, Floor[p^(1 + 1/n)] - p]; Array[f, 75]
-
PARI
first(m)=vector(m,i,floor(prime(i)^(1+1/i)) - prime(i)) \\ Anders Hellström, Sep 06 2015
Formula
a(n) = (log(prime(n)))^2 - log(prime(n)) + O(1), see arXiv:1506.03042. - Alexei Kourbatov, Sep 06 2015
Comments